Mathematical Analysis

A Concise Introduction

DOWNLOAD NOW »

Author: Bernd S. W. Schröder

Publisher: John Wiley & Sons

ISBN: 9780470226766

Category: Mathematics

Page: 584

View: 8063

A self-contained introduction to the fundamentals of mathematical analysis Mathematical Analysis: A Concise Introduction presents the foundations of analysis and illustrates its role in mathematics. By focusing on the essentials, reinforcing learning through exercises, and featuring a unique "learn by doing" approach, the book develops the reader's proof writing skills and establishes fundamental comprehension of analysis that is essential for further exploration of pure and applied mathematics. This book is directly applicable to areas such as differential equations, probability theory, numerical analysis, differential geometry, and functional analysis. Mathematical Analysis is composed of three parts: ?Part One presents the analysis of functions of one variable, including sequences, continuity, differentiation, Riemann integration, series, and the Lebesgue integral. A detailed explanation of proof writing is provided with specific attention devoted to standard proof techniques. To facilitate an efficient transition to more abstract settings, the results for single variable functions are proved using methods that translate to metric spaces. ?Part Two explores the more abstract counterparts of the concepts outlined earlier in the text. The reader is introduced to the fundamental spaces of analysis, including Lp spaces, and the book successfully details how appropriate definitions of integration, continuity, and differentiation lead to a powerful and widely applicable foundation for further study of applied mathematics. The interrelation between measure theory, topology, and differentiation is then examined in the proof of the Multidimensional Substitution Formula. Further areas of coverage in this section include manifolds, Stokes' Theorem, Hilbert spaces, the convergence of Fourier series, and Riesz' Representation Theorem. ?Part Three provides an overview of the motivations for analysis as well as its applications in various subjects. A special focus on ordinary and partial differential equations presents some theoretical and practical challenges that exist in these areas. Topical coverage includes Navier-Stokes equations and the finite element method. Mathematical Analysis: A Concise Introduction includes an extensive index and over 900 exercises ranging in level of difficulty, from conceptual questions and adaptations of proofs to proofs with and without hints. These opportunities for reinforcement, along with the overall concise and well-organized treatment of analysis, make this book essential for readers in upper-undergraduate or beginning graduate mathematics courses who would like to build a solid foundation in analysis for further work in all analysis-based branches of mathematics.

Mathematical Analysis, A Concise Introduction

DOWNLOAD NOW »

Author: CTI Reviews

Publisher: Cram101 Textbook Reviews

ISBN: 1467277290

Category: Education

Page: 77

View: 1027

Facts101 is your complete guide to Mathematical Analysis, A Concise Introduction. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

Mathematical Foundations of Time Series Analysis

A Concise Introduction

DOWNLOAD NOW »

Author: Jan Beran

Publisher: Springer

ISBN: 3319743805

Category: Mathematics

Page: 307

View: 3809

This book provides a concise introduction to the mathematical foundations of time series analysis, with an emphasis on mathematical clarity. The text is reduced to the essential logical core, mostly using the symbolic language of mathematics, thus enabling readers to very quickly grasp the essential reasoning behind time series analysis. It appeals to anybody wanting to understand time series in a precise, mathematical manner. It is suitable for graduate courses in time series analysis but is equally useful as a reference work for students and researchers alike.

A Concise Introduction to Calculus

DOWNLOAD NOW »

Author: Wu Yi Hsiang

Publisher: World Scientific

ISBN: 9789810219017

Category: Mathematics

Page: 157

View: 5194

The student of calculus is entitled to ask what calculus is and what it can be used for. This short book provides an answer.The author starts by demonstrating that calculus provides a mathematical tool for the quantitative analysis of a wide range of dynamical phenomena and systems with variable quantities.He then looks at the origins and intuitive sources of calculus, its fundamental methodology, and its general framework and basic structure, before examining a few typical applications.The author's style is direct and pedagogical. The new student should find that the book provides a clear and strong grounding in this important technique.

A Concise Introduction to Analysis

DOWNLOAD NOW »

Author: Daniel W. Stroock

Publisher: Springer

ISBN: 3319244698

Category: Mathematics

Page: 218

View: 7846

This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more advanced analysis text and covers topics in both real and complex variables. Considerable space is given to developing Riemann integration theory in higher dimensions, including a rigorous treatment of Fubini's theorem, polar coordinates and the divergence theorem. These are used in the final chapter to derive Cauchy's formula, which is then applied to prove some of the basic properties of analytic functions. Among the unusual features of this book is the treatment of analytic function theory as an application of ideas and results in real analysis. For instance, Cauchy's integral formula for analytic functions is derived as an application of the divergence theorem. The last section of each chapter is devoted to exercises that should be viewed as an integral part of the text. A Concise Introduction to Analysis should appeal to upper level undergraduate mathematics students, graduate students in fields where mathematics is used, as well as to those wishing to supplement their mathematical education on their own. Wherever possible, an attempt has been made to give interesting examples that demonstrate how the ideas are used and why it is important to have a rigorous grasp of them.

A Concise Introduction to Pure Mathematics, Third Edition

DOWNLOAD NOW »

Author: Martin Liebeck

Publisher: CRC Press

ISBN: 1439835985

Category: Mathematics

Page: 268

View: 9551

Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Third Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations, the use of Euler’s formula to study the five Platonic solids, the use of prime numbers to encode and decode secret information, and the theory of how to compare the sizes of two infinite sets. New to the Third Edition The third edition of this popular text contains three new chapters that provide an introduction to mathematical analysis. These new chapters introduce the ideas of limits of sequences and continuous functions as well as several interesting applications, such as the use of the intermediate value theorem to prove the existence of nth roots. This edition also includes solutions to all of the odd-numbered exercises. By carefully explaining various topics in analysis, geometry, number theory, and combinatorics, this textbook illustrates the power and beauty of basic mathematical concepts. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher level mathematics, enabling students to study further courses in abstract algebra and analysis.

A Concise Approach to Mathematical Analysis

DOWNLOAD NOW »

Author: Mangatiana A. Robdera

Publisher: Springer Science & Business Media

ISBN: 0857293478

Category: Mathematics

Page: 362

View: 9341

This text introduces to undergraduates the more abstract concepts of advanced calculus, smoothing the transition from standard calculus to the more rigorous approach of proof writing and a deeper understanding of mathematical analysis. The first part deals with the basic foundation of analysis on the real line; the second part studies more abstract notions in mathematical analysis. Each topic contains a brief introduction and detailed examples.

A Concise Introduction to Pure Mathematics, Second Edition

DOWNLOAD NOW »

Author: Martin Liebeck

Publisher: CRC Press

ISBN: 9781584885474

Category: Mathematics

Page: 224

View: 7488

A Concise Introduction to Pure Mathematics, Second Edition provides a robust bridge between high school and university mathematics, expanding upon basic topics in ways that will interest first-year students in mathematics and related fields and stimulate further study. Divided into 22 short chapters, this textbook offers a selection of exercises ranging from routine calculations to quite challenging problems. The author discusses real and complex numbers and explains how these concepts are applied in solving natural problems. He introduces topics in analysis, geometry, number theory, and combinatorics. What's New in the Second Edition: Contains extra material concerning prime numbers, forming the basis for data encryption Explores "Secret Codes" - one of today's most spectacular applications of pure mathematics Discusses Permutations and their importance in many topics in discrete mathematics The textbook allows for the design of courses with various points of emphasis, because it can be divided into four fairly independent sections related to: an introduction to number systems and analysis; theory of the integers; an introduction to discrete mathematics; and functions, relations, and countability.

A Concise Introduction to Pure Mathematics

DOWNLOAD NOW »

Author: Martin Liebeck

Publisher: CRC Press

ISBN: 1315360713

Category: Mathematics

Page: 301

View: 3731

Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler’s formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler’s phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.

A Concise Introduction to Numerical Analysis

DOWNLOAD NOW »

Author: A. C. Faul

Publisher: CRC Press

ISBN: 1498712215

Category: Mathematics

Page: 292

View: 9306

This textbook provides an accessible and concise introduction to numerical analysis for upper undergraduate and beginning graduate students from various backgrounds. It was developed from the lecture notes of four successful courses on numerical analysis taught within the MPhil of Scientific Computing at the University of Cambridge. The book is easily accessible, even to those with limited knowledge of mathematics. Students will get a concise, but thorough introduction to numerical analysis. In addition the algorithmic principles are emphasized to encourage a deeper understanding of why an algorithm is suitable, and sometimes unsuitable, for a particular problem. A Concise Introduction to Numerical Analysis strikes a balance between being mathematically comprehensive, but not overwhelming with mathematical detail. In some places where further detail was felt to be out of scope of the book, the reader is referred to further reading. The book uses MATLAB® implementations to demonstrate the workings of the method and thus MATLAB's own implementations are avoided, unless they are used as building blocks of an algorithm. In some cases the listings are printed in the book, but all are available online on the book’s page at www.crcpress.com. Most implementations are in the form of functions returning the outcome of the algorithm. Also, examples for the use of the functions are given. Exercises are included in line with the text where appropriate, and each chapter ends with a selection of revision exercises. Solutions to odd-numbered exercises are also provided on the book’s page at www.crcpress.com. This textbook is also an ideal resource for graduate students coming from other subjects who will use numerical techniques extensively in their graduate studies.

A Workbook for Differential Equations

DOWNLOAD NOW »

Author: Bernd S. W. Schröder

Publisher: John Wiley & Sons

ISBN: 0470447516

Category: Mathematics

Page: 340

View: 1422

An accessible and hands-on approach to modeling and predicting real-world phenomena using differential equations A Workbook for Differential Equations presents an interactive introduction to fundamental solution methods for ordinary differential equations. The author emphasizes the importance of manually working through computations and models, rather than simply reading or memorizing formulas. Utilizing real-world applications from spring-mass systems and circuits to vibrating strings and an overview of the hydrogen atom, the book connects modern research with the presented topics, including first order equations, constant coefficient equations, Laplace transforms, partial differential equations, series solutions, systems, and numerical methods. The result is a unique guide to understanding the significance of differential equations in mathematics, science, and engineering. The workbook contains modules that involve readers in as many ways as possible, and each module begins with "Prerequisites" and "Learning Objectives" sections that outline both the skills needed to understand the presented material and what new skills will be obtained by the conclusion of the module. Detailed applications are intertwined in the discussion, motivating the investigation of new classes of differential equations and their accompanying techniques. Introductory modeling sections discuss applications and why certain known solution techniques may not be enough to successfully analyze certain situations. Almost every module concludes with a section that contains various projects, ranging from programming tasks to theoretical investigations. The book is specifically designed to promote the development of effective mathematical reading habits such as double-checking results and filling in omitted steps in a computation. Rather than provide lengthy explanations of what readers should do, good habits are demonstrated in short sections, and a wide range of exercises provide the opportunity to test reader comprehension of the concepts and techniques. Rich illustrations, highlighted notes, and boxed comments offer illuminating explanations of the computations. The material is not specific to any one particular software package, and as a result, necessary algorithms can be implemented in various programs, including Mathematica®, Maple, and Mathcad®. The book's related Web site features supplemental slides as well as videos that discuss additional topics such as homogeneous first order equations, the general solution of separable differential equations, and the derivation of the differential equations for a multi-loop circuit. In addition, twenty activities are included at the back of the book, allowing for further practice of discussed topics whether in the classroom or for self-study. With its numerous pedagogical features that consistently engage readers, A Workbook for Differential Equations is an excellent book for introductory courses in differential equations and applied mathematics at the undergraduate level. It is also a suitable reference for professionals in all areas of science, physics, and engineering.

A Concise Introduction to the Theory of Integration

DOWNLOAD NOW »

Author: Daniel W. Stroock

Publisher: Springer Science & Business Media

ISBN: 1475723008

Category: Mathematics

Page: 184

View: 2083

This little book is the outgrowth of a one semester course which I have taught for each of the past four years at M. 1. T. Although this class used to be one of the standard courses taken by essentially every first year gradu ate student of mathematics, in recent years (at least in those when I was the instructor), the clientele has shifted from first year graduate students of mathematics to more advanced graduate students in other disciplines. In fact, the majority of my students have been from departments of engi neering (especially electrical engineering) and most of the rest have been economists. Whether this state of affairs is a reflection on my teaching, the increased importance of mathematical analysis in other disciplines, the superior undergraduate preparation of students coming to M. 1. T in mathematics, or simply the lack of enthusiasm that these students have for analysis, I have preferred not to examine too closely. On the other hand, the situation did force me to do a certain amount of thinking about what constitutes an appropriate course for a group of non-mathematicians who are courageous (foolish?) enough to sign up for an introduction to in tegration theory offered by the department of mathematics. In particular, I had to figure out what to do about that vast body of material which, in standard mathematics offerings, is "assumed to have been covered in your advanced calculus course".

Measure and Integration

A Concise Introduction to Real Analysis

DOWNLOAD NOW »

Author: Leonard F. Richardson

Publisher: John Wiley & Sons

ISBN: 9780470501146

Category: Mathematics

Page: 256

View: 6227

A uniquely accessible book for general measure and integration, emphasizing the real line, Euclidean space, and the underlying role of translation in real analysis Measure and Integration: A Concise Introduction to Real Analysis presents the basic concepts and methods that are important for successfully reading and understanding proofs. Blending coverage of both fundamental and specialized topics, this book serves as a practical and thorough introduction to measure and integration, while also facilitating a basic understanding of real analysis. The author develops the theory of measure and integration on abstract measure spaces with an emphasis of the real line and Euclidean space. Additional topical coverage includes: Measure spaces, outer measures, and extension theorems Lebesgue measure on the line and in Euclidean space Measurable functions, Egoroff's theorem, and Lusin's theorem Convergence theorems for integrals Product measures and Fubini's theorem Differentiation theorems for functions of real variables Decomposition theorems for signed measures Absolute continuity and the Radon-Nikodym theorem Lp spaces, continuous-function spaces, and duality theorems Translation-invariant subspaces of L2 and applications The book's presentation lays the foundation for further study of functional analysis, harmonic analysis, and probability, and its treatment of real analysis highlights the fundamental role of translations. Each theorem is accompanied by opportunities to employ the concept, as numerous exercises explore applications including convolutions, Fourier transforms, and differentiation across the integral sign. Providing an efficient and readable treatment of this classical subject, Measure and Integration: A Concise Introduction to Real Analysis is a useful book for courses in real analysis at the graduate level. It is also a valuable reference for practitioners in the mathematical sciences.

Regression

Modelle, Methoden und Anwendungen

DOWNLOAD NOW »

Author: Ludwig Fahrmeir,Thomas Kneib,Stefan Lang

Publisher: Springer-Verlag

ISBN: 3642018378

Category: Business & Economics

Page: 502

View: 4617

In dem Band beschreiben die Autoren erstmals klassische Regressionsansätze und moderne nicht- und semiparametrische Methoden in einer integrierten und anwendungsorientierten Form. Um Lesern die Analyse eigener Fragestellungen zu ermöglichen, demonstrieren sie die praktische Anwendung der Konzepte und Methoden anhand ausführlicher Fallstudien. Geeignet für Studierende der Statistik sowie für Wissenschaftler und Praktiker, zum Beispiel in den Wirtschafts- und Sozialwissenschaften, der Bioinformatik und -statistik, Ökonometrie und Epidemiologie.

A Concise Introduction to Measure Theory

DOWNLOAD NOW »

Author: Satish Shirali

Publisher: Springer

ISBN: 9783030032401

Category: Mathematics

Page: 271

View: 7561

This undergraduate textbook offers a self-contained and concise introduction to measure theory and integration. The author takes an approach to integration based on the notion of distribution. This approach relies on deeper properties of the Riemann integral which may not be covered in standard undergraduate courses. It has certain advantages, notably simplifying the extension to "fuzzy" measures, which is one of the many topics covered in the book. This book will be accessible to undergraduate students who have completed a first course in the foundations of analysis. Containing numerous examples as well as fully solved exercises, it is exceptionally well suited for self-study or as a supplement to lecture courses.

Fundamentals of Mathematics

An Introduction to Proofs, Logic, Sets, and Numbers

DOWNLOAD NOW »

Author: Bernd S. W. Schröder

Publisher: Wiley

ISBN: 9780470551387

Category: Mathematics

Page: 338

View: 2576

An accessible introduction to abstract mathematics with an emphasis on proof writing Addressing the importance of constructing and understanding mathematical proofs, Fundamentals of Mathematics: An Introduction to Proofs, Logic, Sets, and Numbers introduces key concepts from logic and set theory as well as the fundamental definitions of algebra to prepare readers for further study in the field of mathematics. The author supplies a seamless, hands-on presentation of number systems, utilizing key elements of logic and set theory and encouraging readers to abide by the fundamental rule that you are not allowed to use any results that you have not proved yet. The book begins with a focus on the elements of logic used in everyday mathematical language, exposing readers to standard proof methods and Russell's Paradox. Once this foundation is established, subsequent chapters explore more rigorous mathematical exposition that outlines the requisite elements of Zermelo-Fraenkel set theory and constructs the natural numbers and integers as well as rational, real, and complex numbers in a rigorous, yet accessible manner. Abstraction is introduced as a tool, and special focus is dedicated to concrete, accessible applications, such as public key encryption, that are made possible by abstract ideas. The book concludes with a self-contained proof of Abel's Theorem and an investigation of deeper set theory by introducing the Axiom of Choice, ordinal numbers, and cardinal numbers. Throughout each chapter, proofs are written in much detail with explicit indications that emphasize the main ideas and techniques of proof writing. Exercises at varied levels of mathematical development allow readers to test their understanding of the material, and a related Web site features video presentations for each topic, which can be used along with the book or independently for self-study. Classroom-tested to ensure a fluid and accessible presentation, Fundamentals of Mathematics is an excellent book for mathematics courses on proofs, logic, and set theory at the upper-undergraduate level as well as a supplement for transition courses that prepare students for the rigorous mathematical reasoning of advanced calculus, real analysis, and modern algebra. The book is also a suitable reference for professionals in all areas of mathematics education who are interested in mathematical proofs and the foundation upon which all mathematics is built.

Lineare Funktionalanalysis

Eine anwendungsorientierte Einführung

DOWNLOAD NOW »

Author: Hans Wilhelm Alt

Publisher: Springer-Verlag

ISBN: 3662083868

Category: Mathematics

Page: 294

View: 4417

Complex Analysis

An Invitation : a Concise Introduction to Complex Function Theory

DOWNLOAD NOW »

Author: Murali Rao,Henrik Stetk‘r

Publisher: World Scientific

ISBN: 9789810203757

Category: Mathematics

Page: 240

View: 7691

This is a rigorous introduction to the theory of complex functions of one complex variable. The authors have made an effort to present some of the deeper and more interesting results, for example, Picard's theorems, Riemann mapping theorem, Runge's theorem in the first few chapters. However, the very basic theory is nevertheless given a thorough treatment so that readers should never feel lost. After the first five chapters, the order may be adapted to suit the course. Each chapter finishes with exercises.