Logistic Regression Using SAS

Theory and Application, Second Edition

DOWNLOAD NOW »

Author: Paul D. Allison

Publisher: SAS Institute

ISBN: 1607649950

Category: Mathematics

Page: 348

View: 5050

If you are a researcher or student with experience in multiple linear regression and want to learn about logistic regression, Paul Allison's Logistic Regression Using SAS: Theory and Application, Second Edition, is for you! Informal and nontechnical, this book both explains the theory behind logistic regression, and looks at all the practical details involved in its implementation using SAS. Several real-world examples are included in full detail. This book also explains the differences and similarities among the many generalizations of the logistic regression model. The following topics are covered: binary logistic regression, logit analysis of contingency tables, multinomial logit analysis, ordered logit analysis, discrete-choice analysis, and Poisson regression. Other highlights include discussions on how to use the GENMOD procedure to do loglinear analysis and GEE estimation for longitudinal binary data. Only basic knowledge of the SAS DATA step is assumed. The second edition describes many new features of PROC LOGISTIC, including conditional logistic regression, exact logistic regression, generalized logit models, ROC curves, the ODDSRATIO statement (for analyzing interactions), and the EFFECTPLOT statement (for graphing nonlinear effects). Also new is coverage of PROC SURVEYLOGISTIC (for complex samples), PROC GLIMMIX (for generalized linear mixed models), PROC QLIM (for selection models and heterogeneous logit models), and PROC MDC (for advanced discrete choice models). This book is part of the SAS Press program.

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen

DOWNLOAD NOW »

Author: Ian H. Witten,Eibe Frank

Publisher: N.A

ISBN: 9783446215337

Category:

Page: 386

View: 6934

Survival Analysis Using SAS

A Practical Guide, Second Edition

DOWNLOAD NOW »

Author: Paul D. Allison

Publisher: SAS Institute

ISBN: 9781599948843

Category: Mathematics

Page: 336

View: 7230

Easy to read and comprehensive, Survival Analysis Using SAS: A Practical Guide, Second Edition, by Paul D. Allison, is an accessible, data-based introduction to methods of survival analysis. Researchers who want to analyze survival data with SAS will find just what they need with this fully updated new edition that incorporates the many enhancements in SAS procedures for survival analysis in SAS 9. Although the book assumes only a minimal knowledge of SAS, more experienced users will learn new techniques of data input and manipulation. Numerous examples of SAS code and output make this an eminently practical book, ensuring that even the uninitiated become sophisticated users of survival analysis. The main topics presented include censoring, survival curves, Kaplan-Meier estimation, accelerated failure time models, Cox regression models, and discrete-time analysis. Also included are topics not usually covered in survival analysis books, such as time-dependent covariates, competing risks, and repeated events. Survival Analysis Using SAS: A Practical Guide, Second Edition, has been thoroughly updated for SAS 9, and all figures are presented using ODS Graphics. This new edition also documents major enhancements to the STRATA statement in the LIFETEST procedure; includes a section on the PROBPLOT command, which offers graphical methods to evaluate the fit of each parametric regression model; introduces the new BAYES statement for both parametric and Cox models, which allows the user to do a Bayesian analysis using MCMC methods; demonstrates the use of the counting process syntax as an alternative method for handling time-dependent covariates; contains a section on cumulative incidence functions; and describes the use of the new GLIMMIX procedure to estimate random-effects models for discrete-time data. This book is part of the SAS Press program.

Advanced Regression Models with SAS and R

DOWNLOAD NOW »

Author: Olga Korosteleva

Publisher: CRC Press

ISBN: 1351690078

Category: Mathematics

Page: 14

View: 5192

Advanced Regression Models with SAS and R exposes the reader to the modern world of regression analysis. The material covered by this book consists of regression models that go beyond linear regression, including models for right-skewed, categorical and hierarchical observations. The book presents the theory as well as fully worked-out numerical examples with complete SAS and R codes for each regression. The emphasis is on model accuracy and the interpretation of results. For each regression, the fitted model is presented along with interpretation of estimated regression coefficients and prediction of response for given values of predictors. Features: Presents the theoretical framework for each regression. Discusses data that are categorical, count, proportions, right-skewed, longitudinal and hierarchical. Uses examples based on real-life consulting projects. Provides complete SAS and R codes for each example. Includes several exercises for every regression. Advanced Regression Models with SAS and R is designed as a text for an upper division undergraduate or a graduate course in regression analysis. Prior exposure to the two software packages is desired but not required. The Author: Olga Korosteleva is a Professor of Statistics at California State University, Long Beach. She teaches a large variety of statistical courses to undergraduate and master’s students. She has published three statistical textbooks. For a number of years, she has held the position of faculty director of the statistical consulting group. Her research interests lie mostly in applications of statistical methodology through collaboration with her clients in health sciences, nursing, kinesiology, and other fields.

Biostatistics for Animal Science, 3rd Edition

DOWNLOAD NOW »

Author: Miroslav Kaps,William R Lamberson

Publisher: CABI

ISBN: 1786390353

Category: Medical

Page: 561

View: 8107

Designed to cover techniques for analysis of data in the animal sciences, this popular textbook provides an overview of the basic principles of statistics enabling the subsequent applications to be carried out with familiarity and understanding. Each chapter begins by introducing a problem with practical questions, followed by a brief theoretical background. Most topics are followed up with numerical examples to illustrate the methods described using data-sets from animal sciences and related fields. The same examples are then solved using the SAS software package. Written primarily for students and researchers in animal sciences, the text is also useful for those studying agricultural, biological, and veterinary sciences.

Presenting Medical Statistics from Proposal to Publication

DOWNLOAD NOW »

Author: Janet L. Peacock,Sally M. Kerry,Raymond R. Balise

Publisher: Oxford University Press

ISBN: 0192510886

Category: Medical

Page: 224

View: 4844

As many medical and healthcare researchers have a love-hate relationship with statistics, the second edition of this practical reference book may make all the difference. Using practical examples, mainly from the authors' own research, the book explains how to make sense of statistics, turn statistical computer output into coherent information, and help decide which pieces of information to report and how to present them. The book takes you through all the stages of the research process, from the initial research proposal, through ethical approval and data analysis, to reporting on and publishing the findings. Helpful tips and information boxes, offer clear guidance throughout, including easily followed instructions on how to: -develop a quantitative research proposal for ethical/institutional approval or research funding -write up the statistical aspects of a paper for publication -choose and perform simple and more advanced statistical analyses -describe the statistical methods and present the results of an analysis. This new edition covers a wider range of statistical programs - SAS, STATA, R, and SPSS, and shows the commands needed to obtain the analyses and how to present it, whichever program you are using. Each specific example is annotated to indicate other scenarios that can be analysed using the same methods, allowing you to easily transpose the knowledge gained from the book to your own research. The principles of good presentation are also covered in detail, from translating relevant results into suitable extracts, through to randomised controlled trials, and how to present a meta-analysis. An added ingredient is the inclusion of code and datasets for all analyses shown in the book on our website (http://medical-statistics.info). Written by three experienced biostatisticians based in the UK and US, this is a step-by-step guide that will be invaluable to researchers and postgraduate students in medicine, those working in the professions allied to medicine, and statisticians in consultancy roles.

Ökonometrie für Dummies

DOWNLOAD NOW »

Author: Roberto Pedace

Publisher: John Wiley & Sons

ISBN: 3527801529

Category: Business & Economics

Page: 388

View: 3673

?konometrie; nicht nur der Begriff ist etwas sperrig, auch die Inhalte erschlie?en sich nicht jedem sofort. Wichtig und interessant ist sie aber trotzdem. Roberto Pedace erkl?rt Ihnen, worum es in der ?konometrie geht, wie Sie Test-Hypothesen aufstellen und vieles mehr. Er erl?utert, wie Sie mit Regressionsmodellen arbeiten und mit diskreten und abh?ngigen Variablen umgehen. Gegen Ende des Buches geht er ?ber die Basismodelle hinaus und f?hrt Sie in statische und dynamische Modelle sowie die Kunst der Vorhersagen ein.

Survival Analysis Using SAS(R)

A Practical Guide, Second Edition

DOWNLOAD NOW »

Author: Paul D. Allison

Publisher: N.A

ISBN: 9781635269086

Category: Computers

Page: 336

View: 2184

Easy to read and comprehensive, Survival Analysis Using SAS: A Practical Guide, Second Edition, by Paul Allison, is an accessible, data-based introduction to methods of survival analysis. Researchers who want to analyze survival data with SAS will find just what they need with this fully updated new edition that incorporates the many enhancements in SAS procedures for survival analysis in SAS 9. Although the book assumes only a minimal knowledge of SAS, more experienced users will learn new techniques of data input and manipulation. Numerous examples of SAS code and output make this an eminently practical book, ensuring that even the uninitiated become sophisticated users of survival analysis. The main topics presented include censoring, survival curves, Kaplan-Meier estimation, accelerated failure time models, Cox regression models, and discrete-time analysis. Also included are topics not usually covered in survival analysis books, such as time-dependent covariates, competing risks, and repeated events. Survival Analysis Using SAS: A Practical Guide, Second Edition, has been thoroughly updated for SAS 9, and all figures are presented using ODS Graphics. This new edition also documents major enhancements to the STRATA statement in the LIFETEST procedure; includes a section on the PROBPLOT command, which offers graphical methods to evaluate the fit of each parametric regression model; introduces the new BAYES statement for both parametric and Cox models, which allows the user to do a Bayesian analysis using MCMC methods; demonstrates the use of the counting process syntax as an alternative method for handling time-dependent covariates; contains a section on cumulative incidence functions; and describes the use of the new GLIMMIX procedure to estimate random-effects models for discrete-time data. This book is part of the SAS Press program.

Biostatistics for Animal Science

DOWNLOAD NOW »

Author: Miroslav Kaps,William R. Lamberson

Publisher: CABI

ISBN: 1845935403

Category: Technology & Engineering

Page: 504

View: 4242

Designed to cover techniques for analysis of data in the animal sciences, this textbook provides an overview of the basic principles of statistics enabling the subsequent applications to be carried out with familiarity and understanding, followed by more complex applications and detailed procedures commonly used in animal sciences. Each chapter begins by introducing a problem with practical questions, followed by a brief theoretical background, and is supplemented with an abundance of examples in SAS from animal sciences and related fields. Key features: - New larger format and updated throughout - Covers both basic techniques and more complex procedures - Contains exercises for readers to work through

R in a Nutshell

DOWNLOAD NOW »

Author: Joseph Adler

Publisher: O'Reilly Germany

ISBN: 3897216507

Category: Computers

Page: 768

View: 4417

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Statistik-Workshop für Programmierer

DOWNLOAD NOW »

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 1198

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Social Purpose Enterprises

Case Studies for Social Change

DOWNLOAD NOW »

Author: Jack Quarter,Sherida Ryan,Andrea Chan

Publisher: University of Toronto Press

ISBN: 1442663790

Category: Business & Economics

Page: 324

View: 7164

Social Purpose Enterprises: Case Studies for Social Change presents case studies of twelve organizations that operate in a growing niche within the Canadian social economy: market-based entities supported by a nonprofit organization and operated for the benefit of a workforce who lives on the margins of society. Using a variety of research methods, the contributors examine the work of social purpose enterprises in a range of businesses including food services, child care, furniture, courier services, and microfinance. Combining the experience of academics and practitioners, each chapter analyses the economic, social, and policy implications of the case. Building on research published in Researching the Social Economy (2010) and Businesses with a Difference (2013), Social Purpose Enterprises provides a valuable resource for those involved in the growing push to encourage market-based solutions for those on the social margins.

Predictive Modeling with SAS Enterprise Miner

Practical Solutions for Business Applications, Second Edition

DOWNLOAD NOW »

Author: Kattamuri S. Sarma, PhD

Publisher: SAS Institute

ISBN: 1607648180

Category: Mathematics

Page: 500

View: 5144

Learn the theory behind and methods for predictive modeling using SAS Enterprise Miner. Learn how to produce predictive models and prepare presentation-quality graphics in record time with Predictive Modeling with SAS Enterprise Miner: Practical Solutions for Business Applications, Second Edition. If you are a graduate student, researcher, or statistician interested in predictive modeling; a data mining expert who wants to learn SAS Enterprise Miner; or a business analyst looking for an introduction to predictive modeling using SAS Enterprise Miner, you'll be able to develop predictive models quickly and effectively using the theory and examples presented in this book. Author Kattamuri Sarma offers the theory behind, programming steps for, and examples of predictive modeling with SAS Enterprise Miner, along with exercises at the end of each chapter. You'll gain a comprehensive awareness of how to find solutions for your business needs. This second edition features expanded coverage of the SAS Enterprise Miner nodes, now including File Import, Time Series, Variable Clustering, Cluster, Interactive Binning, Principal Components, AutoNeural, DMNeural, Dmine Regression, Gradient Boosting, Ensemble, and Text Mining. Develop predictive models quickly, learn how to test numerous models and compare the results, gain an in-depth understanding of predictive models and multivariate methods, and discover how to do in-depth analysis. Do it all with Predictive Modeling with SAS Enterprise Miner. This book is part of the SAS Press program.

Primer of Applied Regression & Analysis of Variance, Third Edition

DOWNLOAD NOW »

Author: Stanton A. Glantz,Bryan K. Slinker,Torsten B. Neilands

Publisher: McGraw Hill Professional

ISBN: 0071822445

Category: Medical

Page: 992

View: 3590

A textbook on the use of advanced statistical methods in healthcare sciences Primer of Applied Regression & Analysis of Variance is a textbook especially created for medical, public health, and social and environmental science students who need applied (not theoretical) training in the use of statistical methods. The book has been acclaimed for its user-friendly style that makes complicated material understandable to readers who do not have an extensive math background. The text is packed with learning aids that include chapter-ending summaries and end-of-chapter problems that quickly assess mastery of the material. Examples from biological and health sciences are included to clarify and illustrate key points. The techniques discussed apply to a wide range of disciplines, including social and behavioral science as well as health and life sciences. Typical courses that would use this text include those that cover multiple linear regression and ANOVA. Four completely new chapters Completely updated software information and examples

Applied Linear Regression

DOWNLOAD NOW »

Author: Sanford Weisberg

Publisher: John Wiley & Sons

ISBN: 0471704083

Category: Mathematics

Page: 352

View: 1534