Linear Models with R

DOWNLOAD NOW »

Author: Julian J. Faraway

Publisher: CRC Press

ISBN: 1439887349

Category: Mathematics

Page: 286

View: 946

A Hands-On Way to Learning Data Analysis Part of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition. New to the Second Edition Reorganized material on interpreting linear models, which distinguishes the main applications of prediction and explanation and introduces elementary notions of causality Additional topics, including QR decomposition, splines, additive models, Lasso, multiple imputation, and false discovery rates Extensive use of the ggplot2 graphics package in addition to base graphics Like its widely praised, best-selling predecessor, this edition combines statistics and R to seamlessly give a coherent exposition of the practice of linear modeling. The text offers up-to-date insight on essential data analysis topics, from estimation, inference, and prediction to missing data, factorial models, and block designs. Numerous examples illustrate how to apply the different methods using R.

Extending the Linear Model with R

Generalized Linear, Mixed Effects and Nonparametric Regression Models, Second Edition

DOWNLOAD NOW »

Author: Julian J. Faraway

Publisher: CRC Press

ISBN: 1498720986

Category: Mathematics

Page: 399

View: 8574

Start Analyzing a Wide Range of Problems Since the publication of the bestselling, highly recommended first edition, R has considerably expanded both in popularity and in the number of packages available. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Second Edition takes advantage of the greater functionality now available in R and substantially revises and adds several topics. New to the Second Edition Expanded coverage of binary and binomial responses, including proportion responses, quasibinomial and beta regression, and applied considerations regarding these models New sections on Poisson models with dispersion, zero inflated count models, linear discriminant analysis, and sandwich and robust estimation for generalized linear models (GLMs) Revised chapters on random effects and repeated measures that reflect changes in the lme4 package and show how to perform hypothesis testing for the models using other methods New chapter on the Bayesian analysis of mixed effect models that illustrates the use of STAN and presents the approximation method of INLA Revised chapter on generalized linear mixed models to reflect the much richer choice of fitting software now available Updated coverage of splines and confidence bands in the chapter on nonparametric regression New material on random forests for regression and classification Revamped R code throughout, particularly the many plots using the ggplot2 package Revised and expanded exercises with solutions now included Demonstrates the Interplay of Theory and Practice This textbook continues to cover a range of techniques that grow from the linear regression model. It presents three extensions to the linear framework: GLMs, mixed effect models, and nonparametric regression models. The book explains data analysis using real examples and includes all the R commands necessary to reproduce the analyses.

Generalized Additive Models

An Introduction with R, Second Edition

DOWNLOAD NOW »

Author: Simon N. Wood

Publisher: CRC Press

ISBN: 1498728375

Category: Mathematics

Page: 476

View: 2598

The first edition of this book has established itself as one of the leading references on generalized additive models (GAMs), and the only book on the topic to be introductory in nature with a wealth of practical examples and software implementation. It is self-contained, providing the necessary background in linear models, linear mixed models, and generalized linear models (GLMs), before presenting a balanced treatment of the theory and applications of GAMs and related models. The author bases his approach on a framework of penalized regression splines, and while firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of R software helps explain the theory and illustrates the practical application of the methodology. Each chapter contains an extensive set of exercises, with solutions in an appendix or in the book’s R data package gamair, to enable use as a course text or for self-study. Simon N. Wood is a professor of Statistical Science at the University of Bristol, UK, and author of the R package mgcv.

Probability and Statistics with R

DOWNLOAD NOW »

Author: Maria Dolores Ugarte,Ana F. Militino,Alan T. Arnholt

Publisher: CRC Press

ISBN: 1466504404

Category: Mathematics

Page: 983

View: 8128

Cohesively Incorporates Statistical Theory with R Implementation Since the publication of the popular first edition of this comprehensive textbook, the contributed R packages on CRAN have increased from around 1,000 to over 6,000. Designed for an intermediate undergraduate course, Probability and Statistics with R, Second Edition explores how some of these new packages make analysis easier and more intuitive as well as create more visually pleasing graphs. New to the Second Edition Improvements to existing examples, problems, concepts, data, and functions New examples and exercises that use the most modern functions Coverage probability of a confidence interval and model validation Highlighted R code for calculations and graph creation Gets Students Up to Date on Practical Statistical Topics Keeping pace with today’s statistical landscape, this textbook expands your students’ knowledge of the practice of statistics. It effectively links statistical concepts with R procedures, empowering students to solve a vast array of real statistical problems with R. Web Resources A supplementary website offers solutions to odd exercises and templates for homework assignments while the data sets and R functions are available on CRAN.

Verallgemeinerte stochastische Prozesse

Modellierung und Anwendung technischer Rauschprozesse

DOWNLOAD NOW »

Author: Stefan Schäffler

Publisher: Springer-Verlag

ISBN: 366254265X

Category: Mathematics

Page: 183

View: 8870

Dieses Lehrbuch behandelt die in Natur- und Ingenieurwissenschaften eine zentrale Rolle spielenden Rauschprozesse, wie weißes Rauschen in der Raumsondenkommunikation oder thermisches Rauschen und Schrotrauschen in elektronischen Bauelementen.In dieser Form einzigartig, entwickelt der Autor die mathematische Theorie der verallgemeinerten stochastischen Prozesse und spricht dabei die Anwendung dieser mathematischen Objekte in der Praxis (z.B. Schaltkreissimulation, digitale Nachrichtenübertragung und Bildverarbeitung) an; somit dient dieses Lehrbuch auch als praxisrelevante Einführung in die Modellierung und Verwendung technischer Rauschprozesse. Die mathematische Modellierung von Rauschprozessen führt auf die Theorie stochastischer Prozesse auf Basis verallgemeinerter Funktionen (Distributionen), ohne die kein Handy funktionieren und Anwendungen wie die Simulation komplexer elektronischer Schaltungen unmöglich wäre.Für Anwender und interessierte Mathematiker bietet dieses Werk erstmals einen mathematisch fundierten Einblick in diese Thematik.

Discrete Data Analysis with R

Visualization and Modeling Techniques for Categorical and Count Data

DOWNLOAD NOW »

Author: Michael Friendly,David Meyer

Publisher: CRC Press

ISBN: 1498725856

Category: Mathematics

Page: 562

View: 9485

An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth

Analysis of Variance, Design, and Regression

Linear Modeling for Unbalanced Data, Second Edition

DOWNLOAD NOW »

Author: Ronald Christensen

Publisher: CRC Press

ISBN: 1498730191

Category: Mathematics

Page: 610

View: 7121

Analysis of Variance, Design, and Regression: Linear Modeling for Unbalanced Data, Second Edition presents linear structures for modeling data with an emphasis on how to incorporate specific ideas (hypotheses) about the structure of the data into a linear model for the data. The book carefully analyzes small data sets by using tools that are easily scaled to big data. The tools also apply to small relevant data sets that are extracted from big data. New to the Second Edition Reorganized to focus on unbalanced data Reworked balanced analyses using methods for unbalanced data Introductions to nonparametric and lasso regression Introductions to general additive and generalized additive models Examination of homologous factors Unbalanced split plot analyses Extensions to generalized linear models R, Minitab®, and SAS code on the author’s website The text can be used in a variety of courses, including a yearlong graduate course on regression and ANOVA or a data analysis course for upper-division statistics students and graduate students from other fields. It places a strong emphasis on interpreting the range of computer output encountered when dealing with unbalanced data.

Regression

Modelle, Methoden und Anwendungen

DOWNLOAD NOW »

Author: Ludwig Fahrmeir,Thomas Kneib,Stefan Lang

Publisher: Springer-Verlag

ISBN: 3642018378

Category: Business & Economics

Page: 502

View: 4993

In dem Band beschreiben die Autoren erstmals klassische Regressionsansätze und moderne nicht- und semiparametrische Methoden in einer integrierten und anwendungsorientierten Form. Um Lesern die Analyse eigener Fragestellungen zu ermöglichen, demonstrieren sie die praktische Anwendung der Konzepte und Methoden anhand ausführlicher Fallstudien. Geeignet für Studierende der Statistik sowie für Wissenschaftler und Praktiker, zum Beispiel in den Wirtschafts- und Sozialwissenschaften, der Bioinformatik und -statistik, Ökonometrie und Epidemiologie.

Semantic Web

Grundlagen

DOWNLOAD NOW »

Author: Pascal Hitzler,Markus Krötzsch,Sebastian Rudolph,York Sure

Publisher: Springer-Verlag

ISBN: 3540339949

Category: Computers

Page: 277

View: 4400

Das Buch Semantic Web – Grundlagen vermittelt als erstes deutschsprachiges Lehrbuch die Grundlagen des Semantic Web in verständlicher Weise. Es ermöglicht einen einfachen und zügigen Einstieg in Methoden und Technologien des Semantic Web und kann z.B. als solide Grundlage für die Vorbereitung und Durchführung von Vorlesungen genutzt werden. Die Autoren trennen dabei sauber zwischen einer intuitiven Hinführung zur Verwendung semantischer Technologien in der Praxis einerseits, und der Erklärung formaler und theoretischer Hintergründe andererseits. Nur für letzteres werden Grundkenntnisse in Logik vorausgesetzt, die sich bei Bedarf jedoch durch zusätzliche Lektüre und mit Hilfe eines entsprechenden Kapitels im Anhang aneignen lassen. Das Lehrbuch richtet sich primär an Studenten mit Grundkenntnissen in Informatik sowie an interessierte Praktiker welche sich im Bereich Semantic Web fortbilden möchten. Aus den Rezensionen: "... RDF, RDF-S und OWL. Diese Sprachen ... werden von den Autoren dargestellt. Bei der Darstellung ... fallen sie selten zu schwierigen Fachslang, sondern liefern eine gut nachvollziehbare Schilderung mit einfachen Beispielen, auch Übungsaufgaben runden die Kapitel ab. ... Semantic Web ist ein einfach geschriebenes und anschauliches Buch, das In die Grundkonzepte der Semantic-Web-Techniken einführt. Wer sich schnell in RDF, RDF-S und Co. einarbeiten muss und etwas Vorbildung in Logik und Algebra mitbringt, der trifft mit diesem Lehrbuch sicherlich eine gute Wahl ..." (http://www.literaturnetz.com/content/view/8742/44/)

Statistical Rethinking

A Bayesian Course with Examples in R and Stan

DOWNLOAD NOW »

Author: Richard McElreath

Publisher: CRC Press

ISBN: 1482253461

Category: Mathematics

Page: 469

View: 648

Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

Modeling Techniques in Predictive Analytics with Python and R

A Guide to Data Science

DOWNLOAD NOW »

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 013389214X

Category: Computers

Page: 448

View: 6134

Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Stochastic Processes

An Introduction, Second Edition

DOWNLOAD NOW »

Author: Peter Watts Jones,Peter Smith

Publisher: Chapman and Hall/CRC

ISBN: N.A

Category: Mathematics

Page: 221

View: 4768

This text begins with a review of relevant fundamental probability. It then covers several basic gambling problems, random walks, and Markov chains. The authors go on to develop random processes continuous in time, including Poisson, birth and death processes, and general population models.

Zeitreihenmodelle

DOWNLOAD NOW »

Author: Andrew C. Harvey

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3486786741

Category: Business & Economics

Page: 396

View: 9083

Gegenstand des Werkes sind Analyse und Modellierung von Zeitreihen. Es wendet sich an Studierende und Praktiker aller Disziplinen, in denen Zeitreihenbeobachtungen wichtig sind.

Wahrscheinlichkeitsrechnung und Statistik

DOWNLOAD NOW »

Author: Robert Hafner

Publisher: Springer-Verlag

ISBN: 3709169445

Category: Mathematics

Page: 512

View: 7003

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.

An Introduction to Generalized Linear Models, Third Edition

DOWNLOAD NOW »

Author: Annette J. Dobson,Adrian Barnett

Publisher: Chapman and Hall/CRC

ISBN: 9781584889502

Category: Mathematics

Page: 320

View: 4775

Continuing to emphasize numerical and graphical methods, An Introduction to Generalized Linear Models, Third Edition provides a cohesive framework for statistical modeling. This new edition of a bestseller has been updated with Stata, R, and WinBUGS code as well as three new chapters on Bayesian analysis. Like its predecessor, this edition presents the theoretical background of generalized linear models (GLMs) before focusing on methods for analyzing particular kinds of data. It covers normal, Poisson, and binomial distributions; linear regression models; classical estimation and model fitting methods; and frequentist methods of statistical inference. After forming this foundation, the authors explore multiple linear regression, analysis of variance (ANOVA), logistic regression, log-linear models, survival analysis, multilevel modeling, Bayesian models, and Markov chain Monte Carlo (MCMC) methods. Using popular statistical software programs, this concise and accessible text illustrates practical approaches to estimation, model fitting, and model comparisons. It includes examples and exercises with complete data sets for nearly all the models covered.

Design of Experiments

An Introduction Based on Linear Models

DOWNLOAD NOW »

Author: Max Morris

Publisher: CRC Press

ISBN: 1439894906

Category: Mathematics

Page: 376

View: 6611

Offering deep insight into the connections between design choice and the resulting statistical analysis, Design of Experiments: An Introduction Based on Linear Models explores how experiments are designed using the language of linear statistical models. The book presents an organized framework for understanding the statistical aspects of experimental design as a whole within the structure provided by general linear models, rather than as a collection of seemingly unrelated solutions to unique problems. The core material can be found in the first thirteen chapters. These chapters cover a review of linear statistical models, completely randomized designs, randomized complete blocks designs, Latin squares, analysis of data from orthogonally blocked designs, balanced incomplete block designs, random block effects, split-plot designs, and two-level factorial experiments. The remainder of the text discusses factorial group screening experiments, regression model design, and an introduction to optimal design. To emphasize the practical value of design, most chapters contain a short example of a real-world experiment. Details of the calculations performed using R, along with an overview of the R commands, are provided in an appendix. This text enables students to fully appreciate the fundamental concepts and techniques of experimental design as well as the real-world value of design. It gives them a profound understanding of how design selection affects the information obtained in an experiment.

Statistik II für Dummies

DOWNLOAD NOW »

Author: Deborah J. Rumsey

Publisher: John Wiley & Sons

ISBN: 3527669248

Category: Mathematics

Page: 372

View: 7422

Vom Absolutrang bis zum Zweifach-Varianzanalysemodell – alles, was Sie über weiterführende Statistik wissen sollten Es gibt Qualen, große Qualen und Statistik, so sehen es viele Studenten. Mit diesem Buch lernen Sie weiterführende Statistik so leicht wie möglich. Deborah Rumsey zeigt Ihnen, wie Sie Varianzanalysen und Chi-Quadrat-Tests berechnen, wie Sie mit Regressionen arbeiten, ein Modell erstellen, Korrelationen bilden, nichtparametrische Prozeduren durchführen und vieles mehr. Aber auch die Grundlagen der Statistik bleiben nicht außen vor und deshalb erklärt Ihnen die Autorin, was Sie zu Mittelwerten, Vertrauensintervallen und Co wissen sollten. So lernen Sie die Methoden, die Sie brauchen, und erhalten das Handwerkszeug, um erfolgreich Ihre Statistikprüfungen zu bestehen. Sie erfahren: • Wie Sie mit multiplen Regressionen umgehen • Was es mit dem Vorzeichentest und dem Vorzeichenrangtest auf sich hat • Wie Sie sich innerhalb der statistischen Techniken zurechtfinden • Was das richtige Regressionsmodell für Ihre Analyse ist • Wie Regression und ANOVA zusammenhängen

Introduction to Probability with R

DOWNLOAD NOW »

Author: Kenneth Baclawski

Publisher: Chapman and Hall/CRC

ISBN: 9781420065213

Category: Mathematics

Page: 384

View: 3880

Based on a popular course taught by the late Gian-Carlo Rota of MIT, with many new topics covered as well, Introduction to Probability with R presents R programs and animations to provide an intuitive yet rigorous understanding of how to model natural phenomena from a probabilistic point of view. Although the R programs are small in length, they are just as sophisticated and powerful as longer programs in other languages. This brevity makes it easy for students to become proficient in R. This calculus-based introduction organizes the material around key themes. One of the most important themes centers on viewing probability as a way to look at the world, helping students think and reason probabilistically. The text also shows how to combine and link stochastic processes to form more complex processes that are better models of natural phenomena. In addition, it presents a unified treatment of transforms, such as Laplace, Fourier, and z; the foundations of fundamental stochastic processes using entropy and information; and an introduction to Markov chains from various viewpoints. Each chapter includes a short biographical note about a contributor to probability theory, exercises, and selected answers. The book has an accompanying website with more information.

R in a Nutshell

DOWNLOAD NOW »

Author: Joseph Adler

Publisher: O'Reilly Germany

ISBN: 3897216507

Category: Computers

Page: 768

View: 3144

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.