Aspects of Boundary Problems in Analysis and Geometry

DOWNLOAD NOW »

Author: Juan Gil,Thomas Krainer,Ingo Witt

Publisher: Birkhäuser

ISBN: 3034878508

Category: Mathematics

Page: 564

View: 3194

Boundary problems constitute an essential field of common mathematical interest, they lie in the center of research activities both in analysis and geometry. This book encompasses material from both disciplines, and focuses on their interactions which are particularly apparent in this field. Moreover, the survey style of the contributions makes the topics accessible to a broad audience with a background in analysis or geometry, and enables the reader to get a quick overview.

A First Course in Sobolev Spaces

DOWNLOAD NOW »

Author: Giovanni Leoni

Publisher: American Mathematical Soc.

ISBN: 0821847686

Category: Mathematics

Page: 607

View: 4806

Sobolev spaces are a fundamental tool in the modern study of partial differential equations. In this book, Leoni takes a novel approach to the theory by looking at Sobolev spaces as the natural development of monotone, absolutely continuous, and BV functions of one variable. In this way, the majority of the text can be read without the prerequisite of a course in functional analysis. The first part of this text is devoted to studying functions of one variable. Several of the topics treated occur in courses on real analysis or measure theory. Here, the perspective emphasizes their applications to Sobolev functions, giving a very different flavor to the treatment. This elementary start to the book makes it suitable for advanced undergraduates or beginning graduate students. Moreover, the one-variable part of the book helps to develop a solid background that facilitates the reading and understanding of Sobolev functions of several variables. The second part of the book is more classical, although it also contains some recent results. Besides the standard results on Sobolev functions, this part of the book includes chapters on BV functions, symmetric rearrangement, and Besov spaces. The book contains over 200 exercises.

Guide to Reprints

DOWNLOAD NOW »

Author: Albert James Diaz

Publisher: K G Saur Verlag Gmbh & Co

ISBN: 9783598238963

Category: Out-of-print books

Page: N.A

View: 877

Funktionentheorie

DOWNLOAD NOW »

Author: Reinhold Remmert

Publisher: N.A

ISBN: 9783540553847

Category: Functions of complex variables

Page: 299

View: 542

Diese dritte Auflage wurde zusammen mit dem zweitgenannten Autor kritisch durchgesehen, ergnzt und verbessert. Ein weiteres Kapitel ber geometrische Funktionentheorie und schlichte Funktionen enthlt einen Beweis der Bieberbachschen Vermutung. Der ... vorliegende zweite Band der Funktionentheorie erfllt voll die Erwartungen, die der erste Band geweckt hat. Wieder beeindrucken vor allem die hochinteressanten historischen Bemerkungen zu den einzelnen Themenkreisen, als besonderer Leckerbissen wird das Gutachten von Gau ber Riemanns Dissertation vorgestellt... Jedes einzelne Kapitel enthlt ausfhrliche Literaturangaben. Ferner werden oft sehr aufschlussreiche Hinweise auf die Funktionentheorie mehrerer Vernderlicher gegeben. Die vielen Beispiele und bungsaufgaben bilden eine wertvolle Ergnzung der brillant dargelegten Theorie. Der Rezensent bedauert, dass ihm nicht schon als Student ein derartig umfassendes, qualitativ hochstehendes Lehrbuch zur Verfgung stand." Monatshefte fr Mathematik

Richard Courant 1888–1972

Der Mathematiker als Zeitgenosse

DOWNLOAD NOW »

Author: Constanze Reid

Publisher: Springer-Verlag

ISBN: 3642671845

Category: Mathematics

Page: 376

View: 6241

Aufgaben und Lehrsätze aus der Analysis

Erster Band Reihen • Integralrechnung • Funktionentheorie

DOWNLOAD NOW »

Author: Georg Polya,Gabor Szegö

Publisher: Springer-Verlag

ISBN: 3642619991

Category: Mathematics

Page: 340

View: 6218

Grenzschicht-Theorie

DOWNLOAD NOW »

Author: H. Schlichting,Klaus Gersten

Publisher: Springer-Verlag

ISBN: 3540329854

Category: Technology & Engineering

Page: 799

View: 368

Die Überarbeitung für die 10. deutschsprachige Auflage von Hermann Schlichtings Standardwerk wurde wiederum von Klaus Gersten geleitet, der schon die umfassende Neuformulierung der 9. Auflage vorgenommen hatte. Es wurden durchgängig Aktualisierungen vorgenommen, aber auch das Kapitel 15 von Herbert Oertel jr. neu bearbeitet. Das Buch gibt einen umfassenden Überblick über den Einsatz der Grenzschicht-Theorie in allen Bereichen der Strömungsmechanik. Dabei liegt der Schwerpunkt bei den Umströmungen von Körpern (z.B. Flugzeugaerodynamik). Das Buch wird wieder den Studenten der Strömungsmechanik wie auch Industrie-Ingenieuren ein unverzichtbarer Partner unerschöpflicher Informationen sein.

Finite Elemente

Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie

DOWNLOAD NOW »

Author: Dietrich Braess

Publisher: Springer-Verlag

ISBN: 3662072335

Category: Technology & Engineering

Page: 320

View: 3426

Diese völlig überarbeitete Neuauflage bietet dem Leser eine gründliche Einführung in die Methode der Finiten Elemente, welche heute verstärkt zur numerischen Lösung von partiellen Differentialgleichungen eingesetzt werden. Die Theorie wird so weit entwickelt, daß der Leser mit Kenntnissen aus den Grundvorlesungen des Mathematikstudiums auskommt. Dem für die Praxis relevanten Mehrgitterverfahren und der Methode der konjugierten Gradienten wird ein breiter Platz eingeräumt. Ausführlich wird die Strukturmechanik als ein wichtiger und typischer Anwendungsbereich für Finite Elemente behandelt. Da dieser Aspekt in anderen Lehrbüchern kaum Berücksichtigung findet, wurde er in der Neuauflage stark überarbeitet und abgerundet. Als weitere Ergänzung ist vor allem die Diskussion von a posteriori Schätzern zu nennen.

Bernhard Riemann, 1826-1866

DOWNLOAD NOW »

Author: Detlef Laugwitz

Publisher: Springer Science & Business Media

ISBN: 9783034889834

Category: Mathematics

Page: 348

View: 5503

Das Riemannsche Integral lernen schon die Schüler kennen, die Theorien der reellen und der komplexen Funktionen bauen auf wichtigen Begriffsbildungen und Sätzen Riemanns auf, die Riemannsche Geometrie ist für Einsteins Gravitationstheorie und ihre Erweiterungen unentbehrlich, und in der Zahlentheorie ist die berühmte Riemannsche Vermutung noch immer offen. Riemann und sein um fünf Jahre jüngerer Freund Richard Dedekind sahen sich als Schüler von Gauss und Dirichlet. Um die Mitte des 19. Jahrhunderts leiteten sie den Übergang zur "modernen Mathematik" ein, der eine in Analysis und Geometrie, der andere in der Algebra mit der Hinwendung zu Mengen und Strukturen. Dieses Buch ist der erste Versuch, Riemanns wissenschaftliches Werk unter einem einheitlichen Gesichtspunkt zusammenzufassend darzustellen. Riemann gilt als einer der Philosophen unter den Mathematikern. Er stellte das Denken in Begriffen neben die zuvor vorherrschende algorithmische Auffassung von der Mathematik, welche die Gegenstände der Untersuchung, in Formeln und Figuren, in Termumformungen und regelhaften Konstruktionen als die allein legitimen Methoden sah. David Hilbert hat als Riemanns Grundsatz herausgestellt, die Beweise nicht durch Rechnung, sondern lediglich durch Gedanken zu zwingen. Hermann Weyl sah als das Prinzip Riemanns in Mathematik und Physik, "die Welt als das erkenntnistheoretische Motiv..., die Welt aus ihrem Verhalten im un- endlich kleinen zu verstehen."

Sobolev Spaces on Domains

DOWNLOAD NOW »

Author: Victor I. Burenkov

Publisher: Springer-Verlag

ISBN: 3663113744

Category: Mathematics

Page: 312

View: 9820

Mathematik im mittelalterlichen Islam

DOWNLOAD NOW »

Author: J. L. Berggren

Publisher: Springer-Verlag

ISBN: 9783540766889

Category: Mathematics

Page: 200

View: 4009

Die Mathematik im mittelalterlichen Islam hatte großen Einfluss auf die allgemeine Entwicklung des Faches. Der Autor beschreibt diese Periode der Geschichte der Mathematik und bezieht sich dabei auf die arabischsprachigen Quellen. Zu den behandelten Themen gehören Dezimalrechnen, Geometrie, ebene und sphärische Trigonometrie, Algebra sowie die Approximation von Wurzeln von Gleichungen. Das Buch wendet sich an Mathematikhistoriker und -studenten, aber auch an alle Interessierten mit Mathematikkenntnissen der weiterführenden Schule.

5000 Jahre Geometrie

Geschichte Kulturen Menschen

DOWNLOAD NOW »

Author: Christoph J. Scriba,Peter Schreiber

Publisher: Springer-Verlag

ISBN: 3662045001

Category: Mathematics

Page: 596

View: 6514

Lange bevor die Schrift entwickelt wurde, hat der Mensch geometrische Strukturen wahrgenommen und systematisch verwendet: ob beim Weben oder Flechten einfacher zweidimensionaler Muster oder beim Bauen mit dreidimensionalen Körpern. Das Buch liefert einen faszinierenden Überblick über die geometrischen Vorstellungen und Erkenntnisse der Menschheit von der Urgesellschaft bis hin zu den mathematischen und künstlerischen Ideen des 20. Jahrhunderts.

Diskrete Mathematik

DOWNLOAD NOW »

Author: Martin Aigner

Publisher: Springer-Verlag

ISBN: 9783834800848

Category: Mathematics

Page: 356

View: 1410

Das Standardwerk über Diskrete Mathematik in deutscher Sprache. Großer Wert wird auf die Übungen gelegt, die etwa ein Viertel des Textes ausmachen. Die Übungen sind nach Schwierigkeitsgrad gegliedert, im Anhang findet man Lösungen für etwa die Hälfte der Übungen. Das Buch eignet sich für Lehrveranstaltungen im Bereich Diskrete Mathematik, Kombinatorik, Graphen und Algorithmen.

Gewöhnliche Differentialgleichungen

DOWNLOAD NOW »

Author: Vladimir I. Arnold

Publisher: Springer-Verlag

ISBN: 3642564801

Category: Mathematics

Page: 344

View: 7205

nen (die fast unverändert in moderne Lehrbücher der Analysis übernommen wurde) ermöglichten ihm nach seinen eigenen Worten, "in einer halben Vier telstunde" die Flächen beliebiger Figuren zu vergleichen. Newton zeigte, daß die Koeffizienten seiner Reihen proportional zu den sukzessiven Ableitungen der Funktion sind, doch ging er darauf nicht weiter ein, da er zu Recht meinte, daß die Rechnungen in der Analysis bequemer auszuführen sind, wenn man nicht mit höheren Ableitungen arbeitet, sondern die ersten Glieder der Reihenentwicklung ausrechnet. Für Newton diente der Zusammenhang zwischen den Koeffizienten der Reihe und den Ableitungen eher dazu, die Ableitungen zu berechnen als die Reihe aufzustellen. Eine von Newtons wichtigsten Leistungen war seine Theorie des Sonnensy stems, die in den "Mathematischen Prinzipien der Naturlehre" ("Principia") ohne Verwendung der mathematischen Analysis dargestellt ist. Allgemein wird angenommen, daß Newton das allgemeine Gravitationsgesetz mit Hilfe seiner Analysis entdeckt habe. Tatsächlich hat Newton (1680) lediglich be wiesen, daß die Bahnkurven in einem Anziehungsfeld Ellipsen sind, wenn die Anziehungskraft invers proportional zum Abstandsquadrat ist: Auf das Ge setz selbst wurde Newton von Hooke (1635-1703) hingewiesen (vgl. § 8) und es scheint, daß es noch von weiteren Forschern vermutet wurde.