Introductory Functional Analysis with Applications

DOWNLOAD NOW »

Author: Kreyszig

Publisher: John Wiley & Sons

ISBN: 9788126511914

Category: Functional analysis

Page: 704

View: 4808

Market_Desc: · Undergraduate and Graduate Students in Mathematics and Physics· Engineering· Instructors

Introductory Functional Analysis with Applications

DOWNLOAD NOW »

Author: Erwin Kreyszig

Publisher: Wiley

ISBN: 9780471504597

Category: Mathematics

Page: 704

View: 2247

Provides avenues for applying functional analysis to the practical study of natural sciences as well as mathematics. Contains worked problems on Hilbert space theory and on Banach spaces and emphasizes concepts, principles, methods and major applications of functional analysis.

Introductory Functional Analysis

With Applications to Boundary Value Problems and Finite Elements

DOWNLOAD NOW »

Author: B.D. Reddy

Publisher: Springer Science & Business Media

ISBN: 1461205751

Category: Mathematics

Page: 472

View: 7645

Providing an introduction to functional analysis, this text treats in detail its application to boundary-value problems and finite elements, and is distinguished by the fact that abstract concepts are motivated and illustrated wherever possible. It is intended for use by senior undergraduates and graduates in mathematics, the physical sciences and engineering, who may not have been exposed to the conventional prerequisites for a course in functional analysis, such as real analysis. Mature researchers wishing to learn the basic ideas of functional analysis will equally find this useful. Offers a good grounding in those aspects of functional analysis which are most relevant to a proper understanding and appreciation of the mathematical aspects of boundary-value problems and the finite element method.

Functional Analysis

Theory and Applications

DOWNLOAD NOW »

Author: Robert E. Edwards

Publisher: Courier Corporation

ISBN: 9780486681436

Category: Mathematics

Page: 783

View: 9916

Massive compilation offers detailed, in-depth discussions of vector spaces, Hahn-Banach theorem, fixed-point theorems, duality theory, Krein-Milman theorem, theory of compact operators, much more. Many examples and exercises. 32-page bibliography. 1965 edition.

Applied Functional Analysis

DOWNLOAD NOW »

Author: D.H. Griffel

Publisher: Courier Corporation

ISBN: 0486141322

Category: Mathematics

Page: 390

View: 1905

This introductory text examines applications of functional analysis to mechanics, fluid mechanics, diffusive growth, and approximation. Covers distribution theory, Banach spaces, Hilbert space, spectral theory, Frechet calculus, Sobolev spaces, more. 1985 edition.

Applications of Functional Analysis and Operator Theory

DOWNLOAD NOW »

Author: V. Hutson,J. Pym,M. Cloud

Publisher: Elsevier

ISBN: 9780080527314

Category: Mathematics

Page: 432

View: 7520

Functional analysis is a powerful tool when applied to mathematical problems arising from physical situations. The present book provides, by careful selection of material, a collection of concepts and techniques essential for the modern practitioner. Emphasis is placed on the solution of equations (including nonlinear and partial differential equations). The assumed background is limited to elementary real variable theory and finite-dimensional vector spaces. Key Features - Provides an ideal transition between introductory math courses and advanced graduate study in applied mathematics, the physical sciences, or engineering. - Gives the reader a keen understanding of applied functional analysis, building progressively from simple background material to the deepest and most significant results. - Introduces each new topic with a clear, concise explanation. - Includes numerous examples linking fundamental principles with applications. - Solidifies the reader’s understanding with numerous end-of-chapter problems. · Provides an ideal transition between introductory math courses and advanced graduate study in applied mathematics, the physical sciences, or engineering. · Gives the reader a keen understanding of applied functional analysis, building progressively from simple background material to the deepest and most significant results. · Introduces each new topic with a clear, concise explanation. · Includes numerous examples linking fundamental principles with applications. · Solidifies the reader's understanding with numerous end-of-chapter problems.

Linear Functional Analysis

DOWNLOAD NOW »

Author: Bryan P. Rynne,Martin A. Youngson

Publisher: Springer Science & Business Media

ISBN: 9781852332570

Category: Mathematics

Page: 273

View: 3317

Providing an introduction to the ideas and methods of linear functional analysis, this book shows how familiar and useful concepts from finite-dimensional linear algebra can be extended or generalized to infinite-dimensional spaces. In the initial chapters, the theory of infinite-dimensional normed spaces (in particular Hilbert spaces) is developed, while in later chapters the emphasis shifts to studying operators between such spaces. Functional analysis has applications to a vast range of areas of mathematics; the final chapter discusses the two particularly important areas of integral and differential equations. The reader is assumed to have a standard undergraduate knowledge of linear algebra, real analysis (including the theory of metric spaces), and Lebesgue integration. An introductory chapter summarizes the requisite material. Many exercises are included with solutions provided for each.

Functional Analysis

DOWNLOAD NOW »

Author: Balmohan Vishnu Limaye

Publisher: New Age International

ISBN: 9788122408492

Category: Functional analysis

Page: 612

View: 9790

This Book Is An Introductory Text Written With Minimal Prerequisites. The Plan Is To Impose A Distance Structure On A Linear Space, Exploit It Fully And Then Introduce Additional Features Only When One Cannot Get Any Further Without Them. The Book Naturally Falls Into Two Parts And Each Of Them Is Developed Independently Of The Other The First Part Deals With Normed Spaces, Their Completeness And Continuous Linear Maps On Them, Including The Theory Of Compact Operators. The Much Shorter Second Part Treats Hilbert Spaces And Leads Upto The Spectral Theorem For Compact Self-Adjoint Operators. Four Appendices Point Out Areas Of Further Development.Emphasis Is On Giving A Number Of Examples To Illustrate Abstract Concepts And On Citing Varirous Applications Of Results Proved In The Text. In Addition To Proving Existence And Uniqueness Of A Solution, Its Apprroximate Construction Is Indicated. Problems Of Varying Degrees Of Difficulty Are Given At The End Of Each Section. Their Statements Contain The Answers As Well.

A Course in Functional Analysis

DOWNLOAD NOW »

Author: John B. Conway

Publisher: Springer Science & Business Media

ISBN: 1475738285

Category: Mathematics

Page: 406

View: 3854

Functional analysis has become a sufficiently large area of mathematics that it is possible to find two research mathematicians, both of whom call themselves functional analysts, who have great difficulty understanding the work of the other. The common thread is the existence of a linear space with a topology or two (or more). Here the paths diverge in the choice of how that topology is defined and in whether to study the geometry of the linear space, or the linear operators on the space, or both. In this book I have tried to follow the common thread rather than any special topic. I have included some topics that a few years ago might have been thought of as specialized but which impress me as interesting and basic. Near the end of this work I gave into my natural temptation and included some operator theory that, though basic for operator theory, might be considered specialized by some functional analysts.

Introduction to Functional Analysis with Applications

DOWNLOAD NOW »

Author: A. H. Siddiqi,Khalil Ahmad,Pammy Manchanda

Publisher: Anshan Pub

ISBN: 9781904798910

Category: Mathematics

Page: 362

View: 4711

As science and technology are increasingly refined and interrelated, the demand for mathematical concepts beyond vector algebra and differential and integral calculus has greatly increased. There are four fundamental theorems dealing with properties of functionals and operators called Hahn-Banach theorem, Banach-Steinhaus theorem, Open mapping theorem and Closed graph theorem. Notions of differentiability and integrability of operators are also studied in functional analysis. Applications of functional analysis to operator equations, boundary value problems, optimization, variational inequalities, finite element methods, optimal control and wavelets are all discussed at length, reflecting current trends in the study of functional analysis. This book introduces the above concepts in a way accessible to readers having minimum possible prerequisite of undergraduate mathematics.

Functional Analysis

An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras

DOWNLOAD NOW »

Author: Joseph Muscat

Publisher: Springer

ISBN: 3319067281

Category: Mathematics

Page: 420

View: 8064

This textbook is an introduction to functional analysis suited to final year undergraduates or beginning graduates. Its various applications of Hilbert spaces, including least squares approximation, inverse problems, and Tikhonov regularization, should appeal not only to mathematicians interested in applications, but also to researchers in related fields. Functional Analysis adopts a self-contained approach to Banach spaces and operator theory that covers the main topics, based upon the classical sequence and function spaces and their operators. It assumes only a minimum of knowledge in elementary linear algebra and real analysis; the latter is redone in the light of metric spaces. It contains more than a thousand worked examples and exercises, which make up the main body of the book.

An Introduction to Hilbert Space

DOWNLOAD NOW »

Author: N. Young

Publisher: Cambridge University Press

ISBN: 1107717167

Category: Mathematics

Page: 256

View: 2886

This textbook is an introduction to the theory of Hilbert space and its applications. The notion of Hilbert space is central in functional analysis and is used in numerous branches of pure and applied mathematics. Dr Young has stressed applications of the theory, particularly to the solution of partial differential equations in mathematical physics and to the approximation of functions in complex analysis. Some basic familiarity with real analysis, linear algebra and metric spaces is assumed, but otherwise the book is self-contained. It is based on courses given at the University of Glasgow and contains numerous examples and exercises (many with solutions). Thus it will make an excellent first course in Hilbert space theory at either undergraduate or graduate level and will also be of interest to electrical engineers and physicists, particularly those involved in control theory and filter design.

Functional Analysis

An Introduction

DOWNLOAD NOW »

Author: Yuli Eidelman,Vitali D. Milman,Antonis Tsolomitis

Publisher: American Mathematical Soc.

ISBN: 0821836463

Category: Mathematics

Page: 322

View: 9959

The goal of this textbook is to provide an introduction to the methods and language of functional analysis, including Hilbert spaces, Fredholm theory for compact operators, and spectral theory of self-adjoint operators. It also presents the basic theorems and methods of abstract functional analysis and a few applications of these methods to Banach algebras and the theory of unbounded self-adjoint operators. The text corresponds to material for two semester courses (Part I and Part II, respectively), and it is as self-contained as possible. The only prerequisites for the first part are minimal amounts of linear algebra and calculus. However, for the second course (Part II), it is useful to have some knowledge of topology and measure theory. Each chapter is followed by numerous exercises, whose solutions are given at the end of the book.

Functional Analysis

Spectral Theory

DOWNLOAD NOW »

Author: V.S. Sunder

Publisher: Springer Science & Business Media

ISBN: 9783764358921

Category: Mathematics

Page: 241

View: 3195

In an elegant and concise fashion, this book presents the concepts of functional analysis required by students of mathematics and physics. It begins with the basics of normed linear spaces and quickly proceeds to concentrate on Hilbert spaces, specifically the spectral theorem for bounded as well as unbounded operators in separable Hilbert spaces. While the first two chapters are devoted to basic propositions concerning normed vector spaces and Hilbert spaces, the third chapter treats advanced topics which are perhaps not standard in a first course on functional analysis. It begins with the Gelfand theory of commutative Banach algebras, and proceeds to the Gelfand-Naimark theorem on commutative C*-algebras. A discussion of representations of C*-algebras follows, and the final section of this chapter is devoted to the Hahn-Hellinger classification of separable representations of commutative C*-algebras. After this detour into operator algebras, the fourth chapter reverts to more standard operator theory in Hilbert space, dwelling on topics such as the spectral theorem for normal operators, the polar decomposition theorem, and the Fredholm theory for compact operators. A brief introduction to the theory of unbounded operators on Hilbert space is given in the fifth and final chapter. There is a voluminous appendix whose purpose is to fill in possible gaps in the reader's background in various areas such as linear algebra, topology, set theory and measure theory. The book is interspersed with many exercises, and hints are provided for the solutions to the more challenging of these.

Functional Analysis

DOWNLOAD NOW »

Author: George Bachman,Lawrence Narici

Publisher: Courier Corporation

ISBN: 0486136558

Category: Mathematics

Page: 544

View: 1215

Text covers introduction to inner-product spaces, normed, metric spaces, and topological spaces; complete orthonormal sets, the Hahn-Banach Theorem and its consequences, and many other related subjects. 1966 edition.

Unbounded Linear Operators

Theory and Applications

DOWNLOAD NOW »

Author: Seymour Goldberg

Publisher: Courier Corporation

ISBN: 0486453316

Category: Mathematics

Page: 199

View: 797

This volume presents a systematic treatment of the theory of unbounded linear operators in normed linear spaces with applications to differential equations. Largely self-contained, it is suitable for advanced undergraduates and graduate students, and it only requires a familiarity with metric spaces and real variable theory. After introducing the elementary theory of normed linear spaces--particularly Hilbert space, which is used throughout the book--the author develops the basic theory of unbounded linear operators with normed linear spaces assumed complete, employing operators assumed closed only when needed. Other topics include strictly singular operators; operators with closed range; perturbation theory, including some of the main theorems that are later applied to ordinary differential operators; and the Dirichlet operator, in which the author outlines the interplay between functional analysis and "hard" classical analysis in the study of elliptic partial differential equations. In addition to its readable style, this book's appeal includes numerous examples and motivations for certain definitions and proofs. Moreover, it employs simple notation, eliminating the need to refer to a list of symbols.

Introduction to Spectral Theory in Hilbert Space

DOWNLOAD NOW »

Author: Gilbert Helmberg

Publisher: Courier Dover Publications

ISBN: 0486466221

Category: Mathematics

Page: 346

View: 9152

This text introduces students to Hilbert space and bounded self-adjoint operators, as well as the spectrum of an operator and its spectral decomposition. The author, Emeritus Professor of Mathematics at the University of Innsbruck, Austria, has ensured that the treatment is accessible to readers with no further background than a familiarity with analysis and analytic geometry. Starting with a definition of Hilbert space and its geometry, the text explores the general theory of bounded linear operators, the spectral analysis of compact linear operators, and unbounded self-adjoint operators. Extensive appendixes offer supplemental information on the graph of a linear operator and the Riemann-Stieltjes and Lebesgue integration.

Functional Analysis for Probability and Stochastic Processes

An Introduction

DOWNLOAD NOW »

Author: Adam Bobrowski

Publisher: Cambridge University Press

ISBN: 9780521831666

Category: Mathematics

Page: 393

View: 5568

This text is designed both for students of probability and stochastic processes, and for students of functional analysis. It presents some chosen parts of functional analysis that can help understand ideas from probability and stochastic processes. The subjects range from basic Hilbert and Banach spaces, through weak topologies and Banach algebras, to the theory of semigroups of bounded linear operators. Numerous standard and non-standard examples and exercises make the book suitable as a course textbook as well as for self-study.