Introduction to Tropical Geometry

DOWNLOAD NOW »

Author: Diane Maclagan,Bernd Sturmfels

Publisher: American Mathematical Soc.

ISBN: 0821851985

Category: Algebraic geometry -- Special varieties -- Toric varieties, Newton polyhedra

Page: 363

View: 5907

Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of the six chapters concludes with problems that will help the readers to practice their tropical skills, and to gain access to the research literature.

Introduction to Algebraic Geometry

DOWNLOAD NOW »

Author: Steven Dale Cutkosky

Publisher: American Mathematical Soc.

ISBN: 1470435187

Category: Geometry, Algebraic

Page: 484

View: 9941

This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.

Introduction to Algebraic Geometry

DOWNLOAD NOW »

Author: Brendan Hassett

Publisher: Cambridge University Press

ISBN: 1139464590

Category: Mathematics

Page: N.A

View: 8316

Algebraic geometry, central to pure mathematics, has important applications in such fields as engineering, computer science, statistics and computational biology, which exploit the computational algorithms that the theory provides. Users get the full benefit, however, when they know something of the underlying theory, as well as basic procedures and facts. This book is a systematic introduction to the central concepts of algebraic geometry most useful for computation. Written for advanced undergraduate and graduate students in mathematics and researchers in application areas, it focuses on specific examples and restricts development of formalism to what is needed to address these examples. In particular, it introduces the notion of Gröbner bases early on and develops algorithms for almost everything covered. It is based on courses given over the past five years in a large interdisciplinary programme in computational algebraic geometry at Rice University, spanning mathematics, computer science, biomathematics and bioinformatics.

An Introduction to Symplectic Geometry

DOWNLOAD NOW »

Author: Rolf Berndt

Publisher: American Mathematical Soc.

ISBN: 9780821820568

Category: Mathematics

Page: 195

View: 9757

Starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kahler manifolds, and coadjoint orbits.Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics.This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations.

Algebraic Curves and Riemann Surfaces

DOWNLOAD NOW »

Author: Rick Miranda

Publisher: American Mathematical Soc.

ISBN: 0821802682

Category: Mathematics

Page: 390

View: 1477

The book was easy to understand, with many examples. The exercises were well chosen, and served to give further examples and developments of the theory. --William Goldman, University of Maryland In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking center stage. But the main examples come from projective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Duality Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves and cohomology are introduced as a unifying device in the latter chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one semester of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-semester course in complex variables or a year-long course in algebraic geometry.

Combinatorial Commutative Algebra

DOWNLOAD NOW »

Author: Ezra Miller,Bernd Sturmfels

Publisher: Springer Science & Business Media

ISBN: 0387271031

Category: Mathematics

Page: 420

View: 6464

Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs

Tensors

Geometry and Applications

DOWNLOAD NOW »

Author: J. M. Landsberg

Publisher: American Mathematical Soc.

ISBN: 0821869078

Category: Mathematics

Page: 439

View: 820

Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.

A Course in Differential Geometry

DOWNLOAD NOW »

Author: Thierry Aubin

Publisher: American Mathematical Soc.

ISBN: 082182709X

Category: MATHEMATICS

Page: 184

View: 1320

This textbook for second-year graduate students is intended as an introduction to differential geometry with principal emphasis on Riemannian geometry. Chapter I explains basic definitions and gives the proofs of the important theorems of Whitney and Sard. Chapter II deals with vector fields and differential forms. Chapter III addresses integration of vector fields and $p$-plane fields. Chapter IV develops the notion of connection on a Riemannian manifold considered as a means to define parallel transport on the manifold.The author also discusses related notions of torsion and curvature, and gives a working knowledge of the covariant derivative. Chapter V specializes on Riemannian manifolds by deducing global properties from local properties of curvature, the final goal being to determine the manifold completely. Chapter VI explores some problems in PDEs suggested by the geometry of manifolds. The author is well known for his significant contributions to the field of geometry and PDEs - particularly for his work on the Yamabe problem - and for his expository accounts on the subject. The text contains many problems and solutions, permitting the reader to apply the theorems and to see concrete developments of the abstract theory.

Algebraic Statistics for Computational Biology

DOWNLOAD NOW »

Author: L. Pachter,B. Sturmfels

Publisher: Cambridge University Press

ISBN: 9780521857000

Category: Mathematics

Page: 420

View: 2821

This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology.

Toric Varieties

DOWNLOAD NOW »

Author: David A. Cox,John B. Little,Henry K. Schenck

Publisher: American Mathematical Soc.

ISBN: 0821848194

Category: Mathematics

Page: 841

View: 9513

Toric varieties form a beautiful and accessible part of modern algebraic geometry. This book covers the standard topics in toric geometry; a novel feature is that each of the first nine chapters contains an introductory section on the necessary background material in algebraic geometry. Other topics covered include quotient constructions, vanishing theorems, equivariant cohomology, GIT quotients, the secondary fan, and the minimal model program for toric varieties. The subject lends itself to rich examples reflected in the 134 illustrations included in the text. The book also explores connections with commutative algebra and polyhedral geometry, treating both polytopes and their unbounded cousins, polyhedra. There are appendices on the history of toric varieties and the computational tools available to investigate nontrivial examples in toric geometry. Readers of this book should be familiar with the material covered in basic graduate courses in algebra and topology, and to a somewhat lesser degree, complex analysis. In addition, the authors assume that the reader has had some previous experience with algebraic geometry at an advanced undergraduate level. The book will be a useful reference for graduate students and researchers who are interested in algebraic geometry, polyhedral geometry, and toric varieties.

Algebraic Geometry

DOWNLOAD NOW »

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN: 1475738498

Category: Mathematics

Page: 496

View: 4537

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Elementary Algebraic Geometry

DOWNLOAD NOW »

Author: Klaus Hulek

Publisher: American Mathematical Soc.

ISBN: 0821829521

Category: Mathematics

Page: 213

View: 1368

This book is a true introduction to the basic concepts and techniques of algebraic geometry. The language is purposefully kept on an elementary level, avoiding sheaf theory and cohomology theory. The introduction of new algebraic concepts is always motivated by a discussion of the corresponding geometric ideas. The main point of the book is to illustrate the interplay between abstract theory and specific examples. The book contains numerous problems that illustrate the general theory. The text is suitable for advanced undergraduates and beginning graduate students. It contains sufficient material for a one-semester course. The reader should be familiar with the basic concepts of modern algebra. A course in one complex variable would be helpful, but is not necessary.

An Introduction to Algebraic Geometry

DOWNLOAD NOW »

Author: Kenji Ueno

Publisher: American Mathematical Soc.

ISBN: 0821811444

Category: Mathematics

Page: 246

View: 5299

This introduction to algebraic geometry allows readers to grasp the fundamentals of the subject with only linear algebra and calculus as prerequisites. After a brief history of the subject, the book introduces projective spaces and projective varieties, and explains plane curves and resolution of their singularities. The volume further develops the geometry of algebraic curves and treats congruence zeta functions of algebraic curves over a finite field. It concludes with a complex analytical discussion of algebraic curves. The author emphasizes computation of concrete examples rather than proofs, and these examples are discussed from various viewpoints. This approach allows readers to develop a deeper understanding of the theorems.

Resolution of Singularities

DOWNLOAD NOW »

Author: Steven Dale Cutkosky

Publisher: American Mathematical Soc.

ISBN: 0821835556

Category: Mathematics

Page: 186

View: 4531

The notion of singularity is basic to mathematics. In algebraic geometry, the resolution of singularities by simple algebraic mappings is truly a fundamental problem. It has a complete solution in characteristic zero and partial solutions in arbitrary characteristic. The resolution of singularities in characteristic zero is a key result used in many subjects besides algebraic geometry, such as differential equations, dynamical systems, number theory, the theory of $\mathcal{D}$-modules, topology, and mathematical physics. This book is a rigorous, but instructional, look at resolutions. A simplified proof, based on canonical resolutions, is given for characteristic zero. There are several proofs given for resolution of curves and surfaces in characteristic zero and arbitrary characteristic. Besides explaining the tools needed for understanding resolutions, Cutkosky explains the history and ideas, providing valuable insight and intuition for the novice (or expert). There are many examples and exercises throughout the text. The book is suitable for a second course on an exciting topic in algebraic geometry. A core course on resolutions is contained in Chapters 2 through 6. Additional topics are covered in the final chapters. The prerequisite is a course covering the basic notions of schemes and sheaves.

Intersection Theory

DOWNLOAD NOW »

Author: W. Fulton

Publisher: Springer Science & Business Media

ISBN: 3662024217

Category: Mathematics

Page: 472

View: 7231

From the ancient origins of algebraic geometry in the solution of polynomial equations, through the triumphs of algebraic geometry during the last two cen turies, intersection theory has played a central role. Since its role in founda tional crises has been no less prominent, the lack of a complete modern treatise on intersection theory has been something of an embarrassment. The aim of this book is to develop the foundations of intersection theory, and to indicate the range of classical and modern applications. Although a comprehensive his tory of this vast subject is not attempted, we have tried to point out some of the striking early appearances of the ideas of intersection theory. Recent improvements in our understanding not only yield a stronger and more useful theory than previously available, but also make it possible to devel op the subject from the beginning with fewer prerequisites from algebra and algebraic geometry. It is hoped that the basic text can be read by one equipped with a first course in algebraic geometry, with occasional use of the two appen dices. Some of the examples, and a few of the later sections, require more spe cialized knowledge. The text is designed so that one who understands the con structions and grants the main theorems of the first six chapters can read other chapters separately. Frequent parenthetical references to previous sections are included for such readers. The summaries which begin each chapter should fa cilitate use as a reference.

Rational Points on Varieties

DOWNLOAD NOW »

Author: Bjorn Poonen

Publisher: American Mathematical Soc.

ISBN: 1470437732

Category: Algebraic varieties

Page: 337

View: 5545

This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.

Algebraic Geometry

An Introduction to Birational Geometry of Algebraic Varieties

DOWNLOAD NOW »

Author: S. Iitaka

Publisher: Springer

ISBN: 9781461381211

Category: Mathematics

Page: 357

View: 6990

The aim of this book is to introduce the reader to the geometric theory of algebraic varieties, in particular to the birational geometry of algebraic varieties. This volume grew out of the author's book in Japanese published in 3 volumes by Iwanami, Tokyo, in 1977. While writing this English version, the author has tried to rearrange and rewrite the original material so that even beginners can read it easily without referring to other books, such as textbooks on commutative algebra. The reader is only expected to know the definition of Noetherin rings and the statement of the Hilbert basis theorem. The new chapters 1, 2, and 10 have been expanded. In particular, the exposition of D-dimension theory, although shorter, is more complete than in the old version. However, to keep the book of manageable size, the latter parts of Chapters 6, 9, and 11 have been removed. I thank Mr. A. Sevenster for encouraging me to write this new version, and Professors K. K. Kubota in Kentucky and P. M. H. Wilson in Cam bridge for their careful and critical reading of the English manuscripts and typescripts. I held seminars based on the material in this book at The University of Tokyo, where a large number of valuable comments and suggestions were given by students Iwamiya, Kawamata, Norimatsu, Tobita, Tsushima, Maeda, Sakamoto, Tsunoda, Chou, Fujiwara, Suzuki, and Matsuda.

Introduction to Algebraic Geometry

DOWNLOAD NOW »

Author: Justin R. Smith

Publisher: Justin Smith

ISBN: 1503381536

Category: Geometry, Algebraic

Page: 640

View: 1913

This book is intended for self-study or as a textbook for graduate students or advanced undergraduates. It presupposes some basic knowledge of point-set topology and a solid foundation in linear algebra. Otherwise, it develops all of the commutative algebra, sheaf-theory and cohomology needed to understand the material. It also presents applications to robotics and other fields.

The $K$-book

An Introduction to Algebraic $K$-theory

DOWNLOAD NOW »

Author: Charles A. Weibel

Publisher: American Mathematical Soc.

ISBN: 0821891324

Category: Mathematics

Page: 618

View: 9984

Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr

An Introduction to Grobner Bases

DOWNLOAD NOW »

Author: William W. Adams and Philippe Loustaunau

Publisher: American Mathematical Soc.

ISBN: 9780821872161

Category:

Page: N.A

View: 2107

A very carefully crafted introduction to the theory and some of the applications of Grobner bases ... contains a wealth of illustrative examples and a wide variety of useful exercises, the discussion is everywhere well-motivated, and further developments and important issues are well sign-posted ... has many solid virtues and is an ideal text for beginners in the subject ... certainly an excellent text. --Bulletin of the London Mathematical Society As the primary tool for doing explicit computations in polynomial rings in many variables, Grobner bases are an important component of all computer algebra systems. They are also important in computational commutative algebra and algebraic geometry. This book provides a leisurely and fairly comprehensive introduction to Grobner bases and their applications. Adams and Loustaunau cover the following topics: the theory and construction of Grobner bases for polynomials with coefficients in a field, applications of Grobner bases to computational problems involving rings of polynomials in many variables, a method for computing syzygy modules and Grobner bases in modules, and the theory of Grobner bases for polynomials with coefficients in rings. With over 120 worked-out examples and 200 exercises, this book is aimed at advanced undergraduate and graduate students. It would be suitable as a supplement to a course in commutative algebra or as a textbook for a course in computer algebra or computational commutative algebra. This book would also be appropriate for students of computer science and engineering who have some acquaintance with modern algebra.