*Selfadjoint Ordinary Differential Operators*

Author: Boris Moiseevich Levitan,Ishkhan Saribekovich Sargsi͡an

Publisher: American Mathematical Soc.

ISBN: 9780821886632

Category: Mathematics

Page: 525

View: 7377

Skip to content
# Download PDF Now

## Search Any eBook in PDF Format

# Search Results for: introduction-to-spectral-theory-selfadjoint-ordinary-differential-operators-translations-of-mathematical-monographs

# Introduction to Spectral Theory

# Spectral Theory of Ordinary Differential Operators

# Spectral Theory of Differential Operators

# Spectral Theory of Canonical Differential Systems. Method of Operator Identities

# Ordinary Differential Equations and Dynamical Systems

# Introduction to the Spectral Theory of Polynomial Operator Pencils

# Bulletin of the American Mathematical Society

# Quaestiones Mathematicae

# Mathematica Scandinavica

# Subject Guide to Books in Print

# Associations' Publications in Print

# An Introduction to Classical and P-adic Theory of Linear Operators and Applications

# Monographic Series

# The Asymptotic Distribution of Eigenvalues of Partial Differential Operators

# Notices of the American Mathematical Society

# Introduction to Quantum Graphs

# Expansions in Eigenfunctions of Selfadjoint Operators

# Partielle Differentialgleichungen der Geometrie und der Physik 2

# Acta Scientiarum Mathematicarum

# Subject Catalog

Mathematics

*Selfadjoint Ordinary Differential Operators*

Author: Boris Moiseevich Levitan,Ishkhan Saribekovich Sargsi͡an

Publisher: American Mathematical Soc.

ISBN: 9780821886632

Category: Mathematics

Page: 525

View: 7377

Mathematics

Author: Joachim Weidmann

Publisher: Springer

ISBN: 3540479120

Category: Mathematics

Page: 304

View: 2066

These notes will be useful and of interest to mathematicians and physicists active in research as well as for students with some knowledge of the abstract theory of operators in Hilbert spaces. They give a complete spectral theory for ordinary differential expressions of arbitrary order n operating on -valued functions existence and construction of self-adjoint realizations via boundary conditions, determination and study of general properties of the resolvent, spectral representation and spectral resolution. Special attention is paid to the question of separated boundary conditions, spectral multiplicity and absolutely continuous spectrum. For the case nm=2 (Sturm-Liouville operators and Dirac systems) the classical theory of Weyl-Titchmarch is included. Oscillation theory for Sturm-Liouville operators and Dirac systems is developed and applied to the study of the essential and absolutely continuous spectrum. The results are illustrated by the explicit solution of a number of particular problems including the spectral theory one partical Schrödinger and Dirac operators with spherically symmetric potentials. The methods of proof are functionally analytic wherever possible.Mathematics

Author: I.W. Knowles,R.T. Lewis

Publisher: Elsevier

ISBN: 9780080871660

Category: Mathematics

Page: 383

View: 5082

Spectral Theory of Differential OperatorsMathematics

Author: L.A. Sakhnovich

Publisher: Birkhäuser

ISBN: 3034887132

Category: Mathematics

Page: 202

View: 7736

Theorems of factorising matrix functions and the operator identity method play an essential role in this book in constructing the spectral theory (direct and inverse problems) of canonical differential systems. Includes many varied applications of the general theory.Mathematics

Author: Gerald Teschl

Publisher: American Mathematical Soc.

ISBN: 0821883283

Category: Mathematics

Page: 356

View: 483

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm-Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincare-Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman-Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale-Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.Polynomial operator pencils

Author: A. S. Markus

Publisher: American Mathematical Soc.

ISBN: 0821890824

Category: Polynomial operator pencils

Page: 250

View: 3332

This monograph contains an exposition of the foundations of the spectral theory of polynomial operator pencils acting in a Hilbert space. Spectral problems for polynomial pencils have attracted a steady interest in the last 35 years, mainly because they arise naturally in such diverse areas of mathematical physics as differential equations and boundary value problems, controllable systems, the theory of oscillations and waves, elasticity theory, and hydromechanics. In this book, the author devotes most of his attention to the fundamental results of Keldysh on multiple completeness of the eigenvectors and associate vectors of a pencil, and on the asymptotic behavior of its eigenvalues and generalizations of these results. The author also presents various theorems on spectral factorization of pencils which grew out of known results of M. G. Krein and Heinz Langer. A large portion of the book involves the theory of selfadjoint pencils, an area having numerous applications. Intended for mathematicians, researchers in mechanics, and theoretical physicists interested in spectral theory and its applications, the book assumes a familiarity with the fundamentals of spectral theory of operators acting in a Hilbert space.Mathematics

Mathematics

Mathematics

American literature

*An Index to the Publishers' Trade List Annual*

Author: N.A

Publisher: N.A

ISBN: N.A

Category: American literature

Page: N.A

View: 1979

Associations, institutions, etc

Author: N.A

Publisher: N.A

ISBN: 9780835214926

Category: Associations, institutions, etc

Page: N.A

View: 5409

1981- in 2 v.: v.1, Subject index; v.2, Title index, Publisher/title index, Association name index, Acronym index, Key to publishers' and distributors' abbreviations.Mathematics

Author: Toka Diagana

Publisher: Nova Publishers

ISBN: 9781594544248

Category: Mathematics

Page: 116

View: 932

This book provides the reader with a self-contained treatment of the classical operator theory with significant applications to abstract differential equations, and an elegant introduction to basic concepts and methods of the rapidly growing theory of the so-called p-adic operator theory.Children's literature in series

Author: Library of Congress

Publisher: N.A

ISBN: N.A

Category: Children's literature in series

Page: N.A

View: 8044

Mathematics

Author: Yu Safarov,D. Vassilev

Publisher: American Mathematical Soc.

ISBN: 9780821845776

Category: Mathematics

Page: 354

View: 4521

As the subject of extensive research for over a century, spectral asymptotics for partial differential operators attracted the attention of many outstanding mathematicians and physicists. This work studies the eigenvalues of elliptic linear boundary value problems and has as its main content a collection of asymptotic formulas describing the distribution of eigenvalues with high sequential numbers. Asymptotic formulas are used to illustrate standard eigenvalue problems of mechanics and mathematical physics. The volume provides a basic introduction to the necessary mathematical concepts and tools, such as microlocal analysis, billiards, symplectic geometry and Tauberian theorems. It is self-contained and is aimed at graduate students, research mathematicians, applied mathematicians, engineers, and physicists interested in partial differential equations.Mathematics

Mathematics

Author: Gregory Berkolaiko,Peter Kuchment

Publisher: American Mathematical Soc.

ISBN: 0821892118

Category: Mathematics

Page: 270

View: 6441

A ``quantum graph'' is a graph considered as a one-dimensional complex and equipped with a differential operator (``Hamiltonian''). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., ``meso-'' or ``nano-scale'') system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on quantum graphs has brought together tools and intuition coming from graph theory, combinatorics, mathematical physics, PDEs, and spectral theory. This book provides a comprehensive introduction to the topic, collecting the main notions and techniques. It also contains a survey of the current state of the quantum graph research and applications.Boundary value problems

Author: I͡Uriĭ Makarovich Berezanskiĭ

Publisher: American Mathematical Soc.

ISBN: 9780821886496

Category: Boundary value problems

Page: 809

View: 3544

Mathematics

*Funktionalanalytische Lösungsmethoden*

Author: Friedrich Sauvigny

Publisher: Springer-Verlag

ISBN: 3540275401

Category: Mathematics

Page: 350

View: 9240

Das zweibändige Lehrbuch behandelt das Gebiet der partiellen Differentialgleichungen umfassend und anschaulich. Der Autor stellt in Band 2 funktionalanalytische Lösungsmethoden vor und erläutert u. a. die Lösbarkeit von Operatorgleichungen im Banachraum, lineare Operatoren im Hilbertraum und Spektraltheorie, die Schaudersche Theorie linearer elliptischer Differentialgleichungen sowie schwache Lösungen elliptischer Differentialgleichungen.Mathematics