Introduction to Mathematical Structures and Proofs

DOWNLOAD NOW »

Author: Larry J. Gerstein

Publisher: Springer Science & Business Media

ISBN: 1461442656

Category: Mathematics

Page: 401

View: 1331

As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor—and the flexible thinking—required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader. The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on springer.com for instructors adopting the text for a course.

The Nuts and Bolts of Proofs

An Introduction to Mathematical Proofs

DOWNLOAD NOW »

Author: Antonella Cupillari

Publisher: Academic Press

ISBN: 0123822173

Category: Mathematics

Page: 283

View: 3711

The Nuts and Bolts of Proofs instructs students on the primary basic logic of mathematical proofs, showing how proofs of mathematical statements work. The text provides basic core techniques of how to read and write proofs through examples. The basic mechanics of proofs are provided for a methodical approach in gaining an understanding of the fundamentals to help students reach different results. A variety of fundamental proofs demonstrate the basic steps in the construction of a proof and numerous examples illustrate the method and detail necessary to prove various kinds of theorems. New chapter on proof by contradiction New updated proofs A full range of accessible proofs Symbols indicating level of difficulty help students understand whether a problem is based on calculus or linear algebra Basic terminology list with definitions at the beginning of the text

Einführung in die mathematische Logik

DOWNLOAD NOW »

Author: Heinz-Dieter Ebbinghaus,Jörg Flum,Wolfgang Thomas

Publisher: Spektrum Akademischer Verlag

ISBN: 9783827416919

Category: Mathematics

Page: 339

View: 9590

Was ist ein mathematischer Beweis? Wie lassen sich Beweise rechtfertigen? Gibt es Grenzen der Beweisbarkeit? Ist die Mathematik widerspruchsfrei? Kann man das Auffinden mathematischer Beweise Computern übertragen? Erst im 20. Jahrhundert ist es der mathematischen Logik gelungen, weitreichende Antworten auf diese Fragen zu geben: Im vorliegenden Werk werden die Ergebnisse systematisch zusammengestellt; im Mittelpunkt steht dabei die Logik erster Stufe. Die Lektüre setzt – außer einer gewissen Vertrautheit mit der mathematischen Denkweise – keine spezifischen Kenntnisse voraus. In der vorliegenden 5. Auflage finden sich erstmals Lösungsskizzen zu den Aufgaben.

Das BUCH der Beweise

DOWNLOAD NOW »

Author: Martin Aigner,Günter M. Ziegler

Publisher: Springer-Verlag

ISBN: 3662064545

Category: Mathematics

Page: 247

View: 788

Die elegantesten mathematischen Beweise, spannend und für jeden Interessierten verständlich. "Der Beweis selbst, seine Ästhetik, seine Pointe geht ins Geschichtsbuch der Königin der Wissenschaften ein. Ihre Anmut offenbart sich in dem gelungenen und geschickt illustrierten Buch." Die Zeit

A Beginner's Guide to Discrete Mathematics

DOWNLOAD NOW »

Author: W.D. Wallis

Publisher: Springer Science & Business Media

ISBN: 9780817682866

Category: Mathematics

Page: 427

View: 3400

Wallis's book on discrete mathematics is a resource for an introductory course in a subject fundamental to both mathematics and computer science, a course that is expected not only to cover certain specific topics but also to introduce students to important modes of thought specific to each discipline . . . Lower-division undergraduates through graduate students. —Choice reviews (Review of the First Edition) Very appropriately entitled as a 'beginner's guide', this textbook presents itself as the first exposure to discrete mathematics and rigorous proof for the mathematics or computer science student. —Zentralblatt Math (Review of the First Edition) This second edition of A Beginner’s Guide to Discrete Mathematics presents a detailed guide to discrete mathematics and its relationship to other mathematical subjects including set theory, probability, cryptography, graph theory, and number theory. This textbook has a distinctly applied orientation and explores a variety of applications. Key Features of the second edition: * Includes a new chapter on the theory of voting as well as numerous new examples and exercises throughout the book * Introduces functions, vectors, matrices, number systems, scientific notations, and the representation of numbers in computers * Provides examples which then lead into easy practice problems throughout the text and full exercise at the end of each chapter * Full solutions for practice problems are provided at the end of the book This text is intended for undergraduates in mathematics and computer science, however, featured special topics and applications may also interest graduate students.

Introduction to Real Analysis

DOWNLOAD NOW »

Author: Michael J. Schramm

Publisher: Courier Corporation

ISBN: 0486131920

Category: Mathematics

Page: 384

View: 6300

This text forms a bridge between courses in calculus and real analysis. Suitable for advanced undergraduates and graduate students, it focuses on the construction of mathematical proofs. 1996 edition.

Aufgaben und Lehrsätze aus der Analysis

Erster Band Reihen • Integralrechnung • Funktionentheorie

DOWNLOAD NOW »

Author: Georg Polya,Gabor Szegö

Publisher: Springer-Verlag

ISBN: 3642619991

Category: Mathematics

Page: 340

View: 6839

A Logical Introduction to Proof

DOWNLOAD NOW »

Author: Daniel W. Cunningham

Publisher: Springer Science & Business Media

ISBN: 1461436311

Category: Mathematics

Page: 356

View: 8131

The book is intended for students who want to learn how to prove theorems and be better prepared for the rigors required in more advance mathematics. One of the key components in this textbook is the development of a methodology to lay bare the structure underpinning the construction of a proof, much as diagramming a sentence lays bare its grammatical structure. Diagramming a proof is a way of presenting the relationships between the various parts of a proof. A proof diagram provides a tool for showing students how to write correct mathematical proofs.

Analysis with an Introduction to Proof

DOWNLOAD NOW »

Author: Steven R. Lay

Publisher: Pearson

ISBN: 0321998146

Category:

Page: 400

View: 5705

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For courses in undergraduate Analysis and Transition to Advanced Mathematics. Analysis with an Introduction to Proof, Fifth Edition helps fill in the groundwork students need to succeed in real analysis—often considered the most difficult course in the undergraduate curriculum. By introducing logic and emphasizing the structure and nature of the arguments used, this text helps students move carefully from computationally oriented courses to abstract mathematics with its emphasis on proofs. Clear expositions and examples, helpful practice problems, numerous drawings, and selected hints/answers make this text readable, student-oriented, and teacher- friendly.

A Computational Introduction to Number Theory and Algebra

DOWNLOAD NOW »

Author: Victor Shoup

Publisher: Cambridge University Press

ISBN: 0521516447

Category: Computers

Page: 580

View: 4227

An introductory graduate-level text emphasizing algorithms and applications. This second edition includes over 200 new exercises and examples.

A Course on Mathematical Logic

DOWNLOAD NOW »

Author: Shashi Mohan Srivastava

Publisher: Springer Science & Business Media

ISBN: 1461457467

Category: Mathematics

Page: 198

View: 6321

This is a short, modern, and motivated introduction to mathematical logic for upper undergraduate and beginning graduate students in mathematics and computer science. Any mathematician who is interested in getting acquainted with logic and would like to learn Gödel’s incompleteness theorems should find this book particularly useful. The treatment is thoroughly mathematical and prepares students to branch out in several areas of mathematics related to foundations and computability, such as logic, axiomatic set theory, model theory, recursion theory, and computability. In this new edition, many small and large changes have been made throughout the text. The main purpose of this new edition is to provide a healthy first introduction to model theory, which is a very important branch of logic. Topics in the new chapter include ultraproduct of models, elimination of quantifiers, types, applications of types to model theory, and applications to algebra, number theory and geometry. Some proofs, such as the proof of the very important completeness theorem, have been completely rewritten in a more clear and concise manner. The new edition also introduces new topics, such as the notion of elementary class of structures, elementary diagrams, partial elementary maps, homogeneous structures, definability, and many more.

Essentials of Discrete Mathematics

DOWNLOAD NOW »

Author: David J. Hunter

Publisher: Jones & Bartlett Publishers

ISBN: 1449604420

Category: Computers

Page: 488

View: 6984

Essentials of Discrete Mathematics, Second Edition is the ideal text for a one-term discrete mathematics course to serve computer science majors as well as students from a wide range of other disciplines. It introduces students to the mathematical way of thinking, and also to many important modern applications. The material is organized around five types of thinking: logical, relational, recursive, quantitative, and analytical. This presentation results in a coherent outline that steadily builds upon mathematical sophistication. Graphs are introduced early and referred to throughout the text, providing a richer context for examples and applications. Students will encounter algorithms near the end of the text, after they have acquired the skills and experience needed to analyze them. The final chapter contains in-depth case studies from a variety of fields, including biology, sociology, linguistics, economics, and music. Clear and concise, Essentials of Discrete Mathematics presents a unified and complete picture of discrete mathematics that instructors can cover in a single semester.

An Introduction to Laplace Transforms and Fourier Series

DOWNLOAD NOW »

Author: Phil Dyke

Publisher: Springer Science & Business Media

ISBN: 1447163958

Category: Mathematics

Page: 318

View: 5280

In this book, there is a strong emphasis on application with the necessary mathematical grounding. There are plenty of worked examples with all solutions provided. This enlarged new edition includes generalised Fourier series and a completely new chapter on wavelets. Only knowledge of elementary trigonometry and calculus are required as prerequisites. An Introduction to Laplace Transforms and Fourier Series will be useful for second and third year undergraduate students in engineering, physics or mathematics, as well as for graduates in any discipline such as financial mathematics, econometrics and biological modelling requiring techniques for solving initial value problems.

Was ist Mathematik?

DOWNLOAD NOW »

Author: Richard Courant,Herbert Robbins

Publisher: Springer-Verlag

ISBN: 3642137016

Category: Mathematics

Page: 400

View: 4834

"Was ist Mathematik?" lädt jeden ein, das Reich der Mathematik zu betreten, der neugierig genug ist, sich auf ein Abenteuer einzulassen. Das Buch richtet sich an Leser jeden Alters und jeder Vorbildung. Gymnasiallehrer erhalten eine Fülle von Beispielen, Studenten bietet es Orientierung, und Dozenten werden sich an den Feinheiten der Darstellung zweier Meister ihres Faches erfreuen.

Discrete Mathematics: Introduction to Mathematical Reasoning

DOWNLOAD NOW »

Author: Susanna S. Epp

Publisher: Cengage Learning

ISBN: 0495826170

Category: Mathematics

Page: 648

View: 5444

Susanna Epp's DISCRETE MATHEMATICS: AN INTRODUCTION TO MATHEMATICAL REASONING, provides the same clear introduction to discrete mathematics and mathematical reasoning as her highly acclaimed DISCRETE MATHEMATICS WITH APPLICATIONS, but in a compact form that focuses on core topics and omits certain applications usually taught in other courses. The book is appropriate for use in a discrete mathematics course that emphasizes essential topics or in a mathematics major or minor course that serves as a transition to abstract mathematical thinking. The ideas of discrete mathematics underlie and are essential to the science and technology of the computer age. This book offers a synergistic union of the major themes of discrete mathematics together with the reasoning that underlies mathematical thought. Renowned for her lucid, accessible prose, Epp explains complex, abstract concepts with clarity and precision, helping students develop the ability to think abstractly as they study each topic. In doing so, the book provides students with a strong foundation both for computer science and for other upper-level mathematics courses. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

The Tools of Mathematical Reasoning

DOWNLOAD NOW »

Author: Tamara J. Lakins

Publisher: American Mathematical Soc.

ISBN: 1470428997

Category: General -- Instructional exposition (textbooks, tutorial papers, etc.)

Page: 217

View: 6835

This accessible textbook gives beginning undergraduate mathematics students a first exposure to introductory logic, proofs, sets, functions, number theory, relations, finite and infinite sets, and the foundations of analysis. The book provides students with a quick path to writing proofs and a practical collection of tools that they can use in later mathematics courses such as abstract algebra and analysis. The importance of the logical structure of a mathematical statement as a framework for finding a proof of that statement, and the proper use of variables, is an early and consistent theme used throughout the book.

A Friendly Introduction to Mathematical Logic

DOWNLOAD NOW »

Author: Christopher C. Leary,Lars Kristiansen

Publisher: Lulu.com

ISBN: 1942341075

Category: Education

Page: 365

View: 6644

At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Godel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.

A Mathematical Introduction to Logic

DOWNLOAD NOW »

Author: Herbert Enderton,Herbert B. Enderton

Publisher: Elsevier

ISBN: 0080496466

Category: Mathematics

Page: 317

View: 6424

A Mathematical Introduction to Logic, Second Edition, offers increased flexibility with topic coverage, allowing for choice in how to utilize the textbook in a course. The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, with additional coverage of introductory material such as sets. * Increased flexibility of the text, allowing instructors more choice in how they use the textbook in courses. * Reduced mathematical rigour to fit the needs of undergraduate students

An Introduction to Proof Through Real Analysis

DOWNLOAD NOW »

Author: Daniel J. Madden,Jason A. Aubrey

Publisher: John Wiley & Sons

ISBN: 1119314720

Category: Education

Page: 448

View: 2063

An engaging and accessible introduction to mathematical proof incorporating ideas from real analysis A mathematical proof is an inferential argument for a mathematical statement. Since the time of the ancient Greek mathematicians, the proof has been a cornerstone of the science of mathematics. The goal of this book is to help students learn to follow and understand the function and structure of mathematical proof and to produce proofs of their own. An Introduction to Proof through Real Analysis is based on course material developed and refined over thirty years by Professor Daniel J. Madden and was designed to function as a complete text for both first proofs and first analysis courses. Written in an engaging and accessible narrative style, this book systematically covers the basic techniques of proof writing, beginning with real numbers and progressing to logic, set theory, topology, and continuity. The book proceeds from natural numbers to rational numbers in a familiar way, and justifies the need for a rigorous definition of real numbers. The mathematical climax of the story it tells is the Intermediate Value Theorem, which justifies the notion that the real numbers are sufficient for solving all geometric problems. • Concentrates solely on designing proofs by placing instruction on proof writing on top of discussions of specific mathematical subjects • Departs from traditional guides to proofs by incorporating elements of both real analysis and algebraic representation • Written in an engaging narrative style to tell the story of proof and its meaning, function, and construction • Uses a particular mathematical idea as the focus of each type of proof presented • Developed from material that has been class-tested and fine-tuned over thirty years in university introductory courses An Introduction to Proof through Real Analysis is the ideal introductory text to proofs for second and third-year undergraduate mathematics students, especially those who have completed a calculus sequence, students learning real analysis for the first time, and those learning proofs for the first time. Daniel J. Madden, PhD, is an Associate Professor of Mathematics at The University of Arizona, Tucson, Arizona, USA. He has taught a junior level course introducing students to the idea of a rigorous proof based on real analysis almost every semester since 1990. Dr. Madden is the winner of the 2015 Southwest Section of the Mathematical Association of America Distinguished Teacher Award. Jason A. Aubrey, PhD, is Assistant Professor of Mathematics and Director, Mathematics Center of the University of Arizona.