Introduction to Mathematical Structures and Proofs


Author: Larry J. Gerstein

Publisher: Springer Science & Business Media

ISBN: 1461442656

Category: Mathematics

Page: 401

View: 1634

As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor—and the flexible thinking—required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader. The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on for instructors adopting the text for a course.

An Accompaniment to Higher Mathematics


Author: George R. Exner

Publisher: Springer Science & Business Media

ISBN: 1461239982

Category: Mathematics

Page: 200

View: 3267

Designed for students preparing to engage in their first struggles to understand and write proofs and to read mathematics independently, this is well suited as a supplementary text in courses on introductory real analysis, advanced calculus, abstract algebra, or topology. The book teaches in detail how to construct examples and non-examples to help understand a new theorem or definition; it shows how to discover the outline of a proof in the form of the theorem and how logical structures determine the forms that proofs may take. Throughout, the text asks the reader to pause and work on an example or a problem before continuing, and encourages the student to engage the topic at hand and to learn from failed attempts at solving problems. The book may also be used as the main text for a "transitions" course bridging the gap between calculus and higher mathematics. The whole concludes with a set of "Laboratories" in which students can practice the skills learned in the earlier chapters on set theory and function theory.

Proofs and Fundamentals

A First Course in Abstract Mathematics


Author: Ethan D. Bloch

Publisher: Springer Science & Business Media

ISBN: 1461221307

Category: Mathematics

Page: 424

View: 4188

The aim of this book is to help students write mathematics better. Throughout it are large exercise sets well-integrated with the text and varying appropriately from easy to hard. Basic issues are treated, and attention is given to small issues like not placing a mathematical symbol directly after a punctuation mark. And it provides many examples of what students should think and what they should write and how these two are often not the same.

Bridge to Abstract Mathematics


Author: Ralph W. Oberste-Vorth,Aristides Mouzakitis,Bonita A. Lawrence

Publisher: MAA

ISBN: 0883857790

Category: Mathematics

Page: 232

View: 5962

A Bridge to Abstract Mathematics will prepare the mathematical novice to explore the universe of abstract mathematics. Mathematics is a science that concerns theorems that must be proved within the constraints of a logical system of axioms and definitions, rather than theories that must be tested, revised, and retested. Readers will learn how to read mathematics beyond popular computational calculus courses. Moreover, readers will learn how to construct their own proofs. The book is intended as the primary text for an introductory course in proving theorems, as well as for self-study or as a reference. Throughout the text, some pieces (usually proofs) are left as exercises; Part V gives hints to help students find good approaches to the exercises. Part I introduces the language of mathematics and the methods of proof. The mathematical content of Parts II through IV were chosen so as not to seriously overlap the standard mathematics major. In Part II, students study sets, functions, equivalence and order relations, and cardinality. Part III concerns algebra. The goal is to prove that the real numbers form the unique, up to isomorphism, ordered field with the least upper bound; in the process, we construct the real numbers starting with the natural numbers. Students will be prepared for an abstract linear algebra or modern algebra course. Part IV studies analysis. Continuity and differentiation are considered in the context of time scales (nonempty closed subsets of the real numbers). Students will be prepared for advanced calculus and general topology courses. There is a lot of room for instructors to skip and choose topics from among those that are presented.

Mathematical Logic


Author: H.-D. Ebbinghaus,J. Flum,Wolfgang Thomas

Publisher: Springer Science & Business Media

ISBN: 1475723555

Category: Mathematics

Page: 291

View: 1884

This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.

Handbook of Mathematical Induction

Theory and Applications


Author: David S. Gunderson

Publisher: Discrete Mathematics and its Applications

ISBN: 9781138199019


Page: 921

View: 1768

Handbook of Mathematical Induction: Theory and Applications shows how to find and write proofs via mathematical induction. This comprehensive book covers the theory, the structure of the written proof, all standard exercises, and hundreds of application examples from nearly every area of mathematics. In the first part of the book, the author discusses different inductive techniques, including well-ordered sets, basic mathematical induction, strong induction, double induction, infinite descent, downward induction, and several variants. He then introduces ordinals and cardinals, transfinite induction, the axiom of choice, Zorn s lemma, empirical induction, and fallacies and induction. He also explains how to write inductive proofs. The next part contains more than 750 exercises that highlight the levels of difficulty of an inductive proof, the variety of inductive techniques available, and the scope of results provable by mathematical induction. Each self-contained chapter in this section includes the necessary definitions, theory, and notation and covers a range of theorems and problems, from fundamental to very specialized. The final part presents either solutions or hints to the exercises. Slightly longer than what is found in most texts, these solutions provide complete details for every step of the problem-solving process. "

Elements of Algebra

Geometry, Numbers, Equations


Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 1475739761

Category: Mathematics

Page: 184

View: 447

Algebra is abstract mathematics - let us make no bones about it - yet it is also applied mathematics in its best and purest form. It is not abstraction for its own sake, but abstraction for the sake of efficiency, power and insight. Algebra emerged from the struggle to solve concrete, physical problems in geometry, and succeeded after 2000 years of failure by other forms of mathematics. It did this by exposing the mathematical structure of geometry, and by providing the tools to analyse it. This is typical of the way algebra is applied; it is the best and purest form of application because it reveals the simplest and most universal mathematical structures. The present book aims to foster a proper appreciation of algebra by showing abstraction at work on concrete problems, the classical problems of construction by straightedge and compass. These problems originated in the time of Euclid, when geometry and number theory were paramount, and were not solved until th the 19 century, with the advent of abstract algebra. As we now know, alge bra brings about a unification of geometry, number theory and indeed most branches of mathematics. This is not really surprising when one has a historical understanding of the subject, which I also hope to impart.

The Art of Proof

Basic Training for Deeper Mathematics


Author: Matthias Beck,Ross Geoghegan

Publisher: Springer Science & Business Media

ISBN: 9781441970237

Category: Mathematics

Page: 182

View: 3165

The Art of Proof is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions.

An Introduction to Algebraic Structures


Author: Joseph Landin

Publisher: Courier Corporation

ISBN: 0486150410

Category: Mathematics

Page: 272

View: 2483

This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition.

Elements of Number Theory


Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 0387217355

Category: Mathematics

Page: 256

View: 6593

Solutions of equations in integers is the central problem of number theory and is the focus of this book. The amount of material is suitable for a one-semester course. The author has tried to avoid the ad hoc proofs in favor of unifying ideas that work in many situations. There are exercises at the end of almost every section, so that each new idea or proof receives immediate reinforcement.

Doing Mathematics

An Introduction to Proofs and Problem Solving


Author: Steven Galovich

Publisher: Brooks/Cole Publishing Company


Category: Mathematics

Page: 307

View: 6202

This book introduces students to the process of doing mathematics and prepares them to succeed in higher-level mathematics courses. By discussing proof techniques, problem solving methods, and the understanding of mathematical ideas, the book provides a solid foundation for students majoring in mathematics, science, and engineering. Students will learn to grasp the underlying concepts of a subject and how to apply these concepts to solving problems. While being able to understand and reproduce proofs of theorems, they will also gain the ability to comprehend the connections among the important concepts and techniques of each subject. This book is intended for a shorter course on proofs and mathematical reasoning, and could also be used as a supplemental text in courses such as algebra, analysis, and linear algebra.

How to Prove It

A Structured Approach


Author: Daniel J. Velleman

Publisher: Cambridge University Press

ISBN: 1139450972

Category: Mathematics

Page: N.A

View: 1362

Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.

Transition to Higher Mathematics

Structure and Proof


Author: Bob A. Dumas,John Edward McCarthy

Publisher: McGraw-Hill Education

ISBN: 9780071106474

Category: Logic, Symbolic and mathematical

Page: 296

View: 3146

The authors teach how to organize and structure mathematical thoughts, how to read and manipulate abstract definitions, and how to prove or refute proofs by effectively evaluating them. There is a large array of topics and many exercises.

Groups and Symmetry


Author: Mark A. Armstrong

Publisher: Springer Science & Business Media

ISBN: 1475740344

Category: Mathematics

Page: 187

View: 2194

This is a gentle introduction to the vocabulary and many of the highlights of elementary group theory. Written in an informal style, the material is divided into short sections, each of which deals with an important result or a new idea. Includes more than 300 exercises and approximately 60 illustrations.

An Introduction to Proof Through Real Analysis


Author: Daniel J. Madden,Jason A. Aubrey

Publisher: John Wiley & Sons

ISBN: 1119314720

Category: Education

Page: 448

View: 1759

An engaging and accessible introduction to mathematical proof incorporating ideas from real analysis A mathematical proof is an inferential argument for a mathematical statement. Since the time of the ancient Greek mathematicians, the proof has been a cornerstone of the science of mathematics. The goal of this book is to help students learn to follow and understand the function and structure of mathematical proof and to produce proofs of their own. An Introduction to Proof through Real Analysis is based on course material developed and refined over thirty years by Professor Daniel J. Madden and was designed to function as a complete text for both first proofs and first analysis courses. Written in an engaging and accessible narrative style, this book systematically covers the basic techniques of proof writing, beginning with real numbers and progressing to logic, set theory, topology, and continuity. The book proceeds from natural numbers to rational numbers in a familiar way, and justifies the need for a rigorous definition of real numbers. The mathematical climax of the story it tells is the Intermediate Value Theorem, which justifies the notion that the real numbers are sufficient for solving all geometric problems. • Concentrates solely on designing proofs by placing instruction on proof writing on top of discussions of specific mathematical subjects • Departs from traditional guides to proofs by incorporating elements of both real analysis and algebraic representation • Written in an engaging narrative style to tell the story of proof and its meaning, function, and construction • Uses a particular mathematical idea as the focus of each type of proof presented • Developed from material that has been class-tested and fine-tuned over thirty years in university introductory courses An Introduction to Proof through Real Analysis is the ideal introductory text to proofs for second and third-year undergraduate mathematics students, especially those who have completed a calculus sequence, students learning real analysis for the first time, and those learning proofs for the first time. Daniel J. Madden, PhD, is an Associate Professor of Mathematics at The University of Arizona, Tucson, Arizona, USA. He has taught a junior level course introducing students to the idea of a rigorous proof based on real analysis almost every semester since 1990. Dr. Madden is the winner of the 2015 Southwest Section of the Mathematical Association of America Distinguished Teacher Award. Jason A. Aubrey, PhD, is Assistant Professor of Mathematics and Director, Mathematics Center of the University of Arizona.

Mathematics for Finance

An Introduction to Financial Engineering


Author: Marek Capinski,Tomasz Zastawniak

Publisher: Springer

ISBN: 1852338466

Category: Business & Economics

Page: 314

View: 3836

This textbook contains the fundamentals for an undergraduate course in mathematical finance aimed primarily at students of mathematics. Assuming only a basic knowledge of probability and calculus, the material is presented in a mathematically rigorous and complete way. The book covers the time value of money, including the time structure of interest rates, bonds and stock valuation; derivative securities (futures, options), modelling in discrete time, pricing and hedging, and many other core topics. With numerous examples, problems and exercises, this book is ideally suited for independent study.

Elementary Analysis

The Theory of Calculus


Author: Kenneth A. Ross

Publisher: Springer Science & Business Media

ISBN: 1461462711

Category: Mathematics

Page: 412

View: 2935

For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

Spaces: An Introduction to Real Analysis


Author: Tom L. Lindstrøm

Publisher: American Mathematical Soc.

ISBN: 1470440628

Category: Functional analysis

Page: 369

View: 2660

Spaces is a modern introduction to real analysis at the advanced undergraduate level. It is forward-looking in the sense that it first and foremost aims to provide students with the concepts and techniques they need in order to follow more advanced courses in mathematical analysis and neighboring fields. The only prerequisites are a solid understanding of calculus and linear algebra. Two introductory chapters will help students with the transition from computation-based calculus to theory-based analysis. The main topics covered are metric spaces, spaces of continuous functions, normed spaces, differentiation in normed spaces, measure and integration theory, and Fourier series. Although some of the topics are more advanced than what is usually found in books of this level, care is taken to present the material in a way that is suitable for the intended audience: concepts are carefully introduced and motivated, and proofs are presented in full detail. Applications to differential equations and Fourier analysis are used to illustrate the power of the theory, and exercises of all levels from routine to real challenges help students develop their skills and understanding. The text has been tested in classes at the University of Oslo over a number of years.

Book of Proof


Author: Richard H. Hammack

Publisher: N.A

ISBN: 9780989472111

Category: Mathematics

Page: 314

View: 1422

This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.

An Introduction to Mathematical Cryptography


Author: Jeffrey Hoffstein,Jill Pipher,Joseph H. Silverman

Publisher: Springer

ISBN: 1493917110

Category: Mathematics

Page: 538

View: 7155

This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.