Harmonic Analysis

From Fourier to Wavelets

DOWNLOAD NOW »

Author: María Cristina Pereyra,Lesley A. Ward

Publisher: American Mathematical Soc.

ISBN: 0821875663

Category: Mathematics

Page: 410

View: 4555

In the last 200 years, harmonic analysis has been one of the most influential bodies of mathematical ideas, having been exceptionally significant both in its theoretical implications and in its enormous range of applicability throughout mathematics, science, and engineering. In this book, the authors convey the remarkable beauty and applicability of the ideas that have grown from Fourier theory. They present for an advanced undergraduate and beginning graduate student audience the basics of harmonic analysis, from Fourier's study of the heat equation, and the decomposition of functions into sums of cosines and sines (frequency analysis), to dyadic harmonic analysis, and the decomposition of functions into a Haar basis (time localization). While concentrating on the Fourier and Haar cases, the book touches on aspects of the world that lies between these two different ways of decomposing functions: time-frequency analysis (wavelets). Both finite and continuous perspectives are presented, allowing for the introduction of discrete Fourier and Haar transforms and fast algorithms, such as the Fast Fourier Transform (FFT) and its wavelet analogues. The approach combines rigorous proof, inviting motivation, and numerous applications. Over 250 exercises are included in the text. Each chapter ends with ideas for projects in harmonic analysis that students can work on independently. This book is published in cooperation with IAS/Park City Mathematics Institute.

Generalized Harmonic Analysis and Wavelet Packets

An Elementary Treatment of Theory and Applications

DOWNLOAD NOW »

Author: Khalifa Trimeche

Publisher: CRC Press

ISBN: 9789056993290

Category: Mathematics

Page: 320

View: 9807

The book presents a more comprehensive treatment of transmutation operators associated with the Bessel operator, and explores many of their properties. They are fundamental in the complete study of the Bessel harmonic analysis and the Bessel wavelet packets. Many applications of these theories and their generalizations have been injected throughout the text by way of a rich collection of problems and references. The results and methods in this book should be of interest to graduate and researchers working in special functions such as Fourier analysis, hypergroup and operator theories, differential equations, probability theory and mathematical physics. Background materials are given in adequate detail to enable a graduate student to proceed rapidly from the very basics of the frontier of research in the area of generalized harmonic analysis and wavelets.

Algebra

Aus dem Englischen übersetzt von Annette A’Campo

DOWNLOAD NOW »

Author: Michael Artin

Publisher: Birkhäuser

ISBN: 9783764359386

Category: Mathematics

Page: 705

View: 4104

Important though the general concepts and propositions may be with which the modem and industrious passion for axiomatizing and generalizing has presented us, in algebra perhaps more than anywhere else, nevertheless I am convinced that the special problems in all their complexity constitute the stock and core of mathematics, and that to master their difficulties requires on the whole the harder labor. HERMANN WEYL Die Arbeit an diesem Buch begann vor etwa zwanzig Jahren mit Aufzeichnungen zur Ergänzung meiner Algebravorlesungen. Ich wollte einige konkrete Themen, wie Symmetrie, lineare Gruppen und quadratische Zahlkörper, ausführlicher be­ handeln als dies im vorgesehenen Text der Fall war, und darüberhinaus wollte ich den Schwerpunkt in der Gruppentheorie von den Permutationsgruppen auf Matrixgruppen verlagern. Ein anderes ständig wiederkehrendes Thema, nämlich Gitter, sind spontan aufgetaucht. Ich hoffte, der konkrete Stoff könne das Interesse der Studenten wecken und gleichzeitig die Abstraktionen verständlicher machen, kurz gesagt, sie sollten weiter kommen, indem sie beides gleichzeitig lernten. Das bewährte sich gut. Es dauerte einige Zeit, bis ich entschieden hatte, welche Themen ich behandeln wollte, und allmählich verteilte ich mehr und mehr Aufzeichnungen und ging schließlich dazu über, die ganze Vorlesung mit diesem Skript zu bestrei­ ten. Auf diese Weise ist ein Buch entstanden, das, wie ich meine, etwas anders ist als die existierenden Bücher. Allerdings haben mir die Probleme, die ich damit hatte, die einzelnen Teile des Buches zu einem Ganzen zusammenzufügen, einige Kopfschmerzen bereitet; ich kann also nicht empfehlen, auf diese Art anzufangen, ein Buch zu schreiben.

An Introduction to Harmonic Analysis

DOWNLOAD NOW »

Author: Yitzhak Katznelson

Publisher: Cambridge University Press

ISBN: 9780521543590

Category: Mathematics

Page: 314

View: 6619

First published in 1968, An Introduction to Harmonic Analysis has firmly established itself as a classic text and a favorite for students and experts alike. Professor Katznelson starts the book with an exposition of classical Fourier series. The aim is to demonstrate the central ideas of harmonic analysis in a concrete setting, and to provide a stock of examples to foster a clear understanding of the theory. Once these ideas are established, the author goes on to show that the scope of harmonic analysis extends far beyond the setting of the circle group, and he opens the door to other contexts by considering Fourier transforms on the real line as well as a brief look at Fourier analysis on locally compact abelian groups. This new edition has been revised by the author, to include several new sections and a new appendix.

A Panorama of Harmonic Analysis

DOWNLOAD NOW »

Author: Steven Krantz

Publisher: Cambridge University Press

ISBN: 9780883850312

Category: Mathematics

Page: 357

View: 5577

A Panorama of Harmonic Analysis treats the subject of harmonic analysis, from its earliest beginnings to the latest research. Following both an historical and a conceptual genesis, the book discusses Fourier series of one and several variables, the Fourier transform, spherical harmonics, fractional integrals, and singular integrals on Euclidean space. The climax of the book is a consideration of the earlier ideas from the point of view of spaces of homogeneous type. The book culminates with a discussion of wavelets-one of the newest ideas in the subject. A Panorama of Harmonic Analysis is intended for graduate students, advanced undergraduates, mathematicians, and anyone wanting to get a quick overview of the subject of cummutative harmonic analysis. Applications are to mathematical physics, engineering and other parts of hard science. Required background is calculus, set theory, integration theory, and the theory of sequences and series.

Differentialgeometrie

Kurven - Flächen - Mannigfaltigkeiten

DOWNLOAD NOW »

Author: Wolfgang Kühnel

Publisher: Springer-Verlag

ISBN: 3834896551

Category: Mathematics

Page: 280

View: 1683

Dieses Buch ist eine Einführung in die Differentialgeometrie. Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Im Laufe der Neuauflagen wurde der Text erweitert, neue Aufgaben wurden hinzugefügt und am Ende des Buches wurden zusätzliche Hinweise zur Lösung der Übungsaufgaben ergänzt. Der Text wurde für die fünfte Auflage gründlich durchgesehen und an einigen Stellen verbessert.

Harmonic Analysis and Applications

DOWNLOAD NOW »

Author: John J. Benedetto

Publisher: CRC Press

ISBN: 9780849378799

Category: Mathematics

Page: 368

View: 1249

Harmonic analysis plays an essential role in understanding a host of engineering, mathematical, and scientific ideas. In Harmonic Analysis and Applications, the analysis and synthesis of functions in terms of harmonics is presented in such a way as to demonstrate the vitality, power, elegance, usefulness, and the intricacy and simplicity of the subject. This book is about classical harmonic analysis - a textbook suitable for students, and an essay and general reference suitable for mathematicians, physicists, and others who use harmonic analysis. Throughout the book, material is provided for an upper level undergraduate course in harmonic analysis and some of its applications. In addition, the advanced material in Harmonic Analysis and Applications is well-suited for graduate courses. The course is outlined in Prologue I. This course material is excellent, not only for students, but also for scientists, mathematicians, and engineers as a general reference. Chapter 1 covers the Fourier analysis of integrable and square integrable (finite energy) functions on R. Chapter 2 of the text covers distribution theory, emphasizing the theory's useful vantage point for dealing with problems and general concepts from engineering, physics, and mathematics. Chapter 3 deals with Fourier series, including the Fourier analysis of finite and infinite sequences, as well as functions defined on finite intervals. The mathematical presentation, insightful perspectives, and numerous well-chosen examples and exercises in Harmonic Analysis and Applications make this book well worth having in your collection.

An Introduction to Wavelet Analysis

DOWNLOAD NOW »

Author: David F. Walnut

Publisher: Springer Science & Business Media

ISBN: 1461200016

Category: Computers

Page: 452

View: 452

This book provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and analysis of wavelet bases. It motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, then shows how a more abstract approach allows readers to generalize and improve upon the Haar series. It then presents a number of variations and extensions of Haar construction.

Principles of Harmonic Analysis

DOWNLOAD NOW »

Author: Anton Deitmar,Siegfried Echterhoff

Publisher: Springer

ISBN: 3319057928

Category: Mathematics

Page: 332

View: 9716

This book offers a complete and streamlined treatment of the central principles of abelian harmonic analysis: Pontryagin duality, the Plancherel theorem and the Poisson summation formula, as well as their respective generalizations to non-abelian groups, including the Selberg trace formula. The principles are then applied to spectral analysis of Heisenberg manifolds and Riemann surfaces. This new edition contains a new chapter on p-adic and adelic groups, as well as a complementary section on direct and projective limits. Many of the supporting proofs have been revised and refined. The book is an excellent resource for graduate students who wish to learn and understand harmonic analysis and for researchers seeking to apply it.

Analysis I

DOWNLOAD NOW »

Author: Martin Barner,Friedrich Flohr

Publisher: Walter de Gruyter

ISBN: 3110854775

Category: Mathematics

Page: 554

View: 7479

Lineare Algebra

DOWNLOAD NOW »

Author: Werner Greub

Publisher: Springer-Verlag

ISBN: 3642663850

Category: Mathematics

Page: 222

View: 6164

Wavelet Transforms and Their Applications

DOWNLOAD NOW »

Author: Lokenath Debnath,Firdous Ahmad Shah

Publisher: Springer

ISBN: 0817684182

Category: Technology & Engineering

Page: 553

View: 2357

This textbook is an introduction to wavelet transforms and accessible to a larger audience with diverse backgrounds and interests in mathematics, science, and engineering. Emphasis is placed on the logical development of fundamental ideas and systematic treatment of wavelet analysis and its applications to a wide variety of problems as encountered in various interdisciplinary areas. Topics and Features: * This second edition heavily reworks the chapters on Extensions of Multiresolution Analysis and Newlands’s Harmonic Wavelets and introduces a new chapter containing new applications of wavelet transforms * Uses knowledge of Fourier transforms, some elementary ideas of Hilbert spaces, and orthonormal systems to develop the theory and applications of wavelet analysis * Offers detailed and clear explanations of every concept and method, accompanied by carefully selected worked examples, with special emphasis given to those topics in which students typically experience difficulty * Includes carefully chosen end-of-chapter exercises directly associated with applications or formulated in terms of the mathematical, physical, and engineering context and provides answers to selected exercises for additional help Mathematicians, physicists, computer engineers, and electrical and mechanical engineers will find Wavelet Transforms and Their Applications an exceptionally complete and accessible text and reference. It is also suitable as a self-study or reference guide for practitioners and professionals.

Framelets and Wavelets

Algorithms, Analysis, and Applications

DOWNLOAD NOW »

Author: Bin Han

Publisher: Birkhäuser

ISBN: 9783319685298

Category: Mathematics

Page: 724

View: 5719

Marking a distinct departure from the perspectives of frame theory and discrete transforms, this book provides a comprehensive mathematical and algorithmic introduction to wavelet theory. As such, it can be used as either a textbook or reference guide. As a textbook for graduate mathematics students and beginning researchers, it offers detailed information on the basic theory of framelets and wavelets, complemented by self-contained elementary proofs, illustrative examples/figures, and supplementary exercises. Further, as an advanced reference guide for experienced researchers and practitioners in mathematics, physics, and engineering, the book addresses in detail a wide range of basic and advanced topics (such as multiwavelets/multiframelets in Sobolev spaces and directional framelets) in wavelet theory, together with systematic mathematical analysis, concrete algorithms, and recent developments in and applications of framelets and wavelets. Lastly, the book can also be used to teach on or study selected special topics in approximation theory, Fourier analysis, applied harmonic analysis, functional analysis, and wavelet-based signal/image processing.

New Trends in Applied Harmonic Analysis

Sparse Representations, Compressed Sensing, and Multifractal Analysis

DOWNLOAD NOW »

Author: Akram Aldroubi,Carlos Cabrelli,Stephane Jaffard,Ursula Molter

Publisher: Birkhäuser

ISBN: 3319278738

Category: Mathematics

Page: 334

View: 5765

This volume is a selection of written notes corresponding to courses taught at the CIMPA School: "New Trends in Applied Harmonic Analysis: Sparse Representations, Compressed Sensing and Multifractal Analysis". New interactions between harmonic analysis and signal and image processing have seen striking development in the last 10 years, and several technological deadlocks have been solved through the resolution of deep theoretical problems in harmonic analysis. New Trends in Applied Harmonic Analysis focuses on two particularly active areas that are representative of such advances: multifractal analysis, and sparse representation and compressed sensing. The contributions are written by leaders in these areas, and cover both theoretical aspects and applications. This work should prove useful not only to PhD students and postdocs in mathematics and signal and image processing, but also to researchers working in related topics.

Approximation Theory

From Taylor Polynomials to Wavelets

DOWNLOAD NOW »

Author: Ole Christensen,Khadija Laghrida Christensen

Publisher: Springer Science & Business Media

ISBN: 0817644482

Category: Mathematics

Page: 156

View: 5903

This concisely written book gives an elementary introduction to a classical area of mathematics – approximation theory – in a way that naturally leads to the modern field of wavelets. The exposition, driven by ideas rather than technical details and proofs, demonstrates the dynamic nature of mathematics and the influence of classical disciplines on many areas of modern mathematics and applications. Featuring classical, illustrative examples and constructions, exercises, and a discussion of the role of wavelets to areas such as digital signal processing and data compression, the book is one of the few to describe wavelets in words rather than mathematical symbols.

Wavelets

Theorie und Anwendungen

DOWNLOAD NOW »

Author: Alfred K. Louis,Peter Maaß,Andreas Rieder

Publisher: Springer-Verlag

ISBN: 3322801365

Category: Technology & Engineering

Page: 330

View: 4454

In der 2. Auflage wird u.a. der Vorteil der Wavelet-Transformation gegenüber der gef. Fourier-Transformation deutlich herausgearbeitet. Die Konstruktionsprinzipien orthogonaler und biorthogonaler Wavelets werden durch Beispiele weitergehend erläutert. Zahlreiche Aufgaben erleichtern das Verständnis des Stoffes.

Wavelets in Physics

DOWNLOAD NOW »

Author: J. C. van den Berg

Publisher: Cambridge University Press

ISBN: 9780521533539

Category: Mathematics

Page: 453

View: 4347

Surveys the application of the wavelet transform to a wide range of physical fields.

An Introduction to Frames and Riesz Bases

DOWNLOAD NOW »

Author: Ole Christensen

Publisher: Birkhäuser

ISBN: 3319256130

Category: Mathematics

Page: 704

View: 1950

This revised and expanded monograph presents the general theory for frames and Riesz bases in Hilbert spaces as well as its concrete realizations within Gabor analysis, wavelet analysis, and generalized shift-invariant systems. Compared with the first edition, more emphasis is put on explicit constructions with attractive properties. Based on the exiting development of frame theory over the last decade, this second edition now includes new sections on the rapidly growing fields of LCA groups, generalized shift-invariant systems, duality theory for as well Gabor frames as wavelet frames, and open problems in the field. Key features include: *Elementary introduction to frame theory in finite-dimensional spaces * Basic results presented in an accessible way for both pure and applied mathematicians * Extensive exercises make the work suitable as a textbook for use in graduate courses * Full proofs includ ed in introductory chapters; only basic knowledge of functional analysis required * Explicit constructions of frames and dual pairs of frames, with applications and connections to time-frequency analysis, wavelets, and generalized shift-invariant systems * Discussion of frames on LCA groups and the concrete realizations in terms of Gabor systems on the elementary groups; connections to sampling theory * Selected research topics presented with recommendations for more advanced topics and further readin g * Open problems to stimulate further research An Introduction to Frames and Riesz Bases will be of interest to graduate students and researchers working in pure and applied mathematics, mathematical physics, and engineering. Professionals working in digital signal processing who wish to understand the theory behind many modern signal processing tools may also find this book a useful self-study reference. Review of the first edition: "Ole Christensen’s An Introduction to Frames and Riesz Bases is a first-rate introduction to the field ... . The book provides an excellent exposition of these topics. The material is broad enough to pique the interest of many readers, the included exercises supply some interesting challenges, and the coverage provides enough background for those new to the subject to begin conducting original research." — Eric S. Weber, American Mathematical Monthly, Vol. 112, February, 2005

Differentialgleichungen und ihre Anwendungen

DOWNLOAD NOW »

Author: Martin Braun

Publisher: Springer-Verlag

ISBN: 3642973418

Category: Mathematics

Page: 596

View: 6930

Dieses richtungsweisende Lehrbuch für die Anwendung der Mathematik in anderen Wissenschaftszweigen gibt eine Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Fortran und APL-Programme geben den Studenten die Möglichkeit, verschiedene numerische Näherungsverfahren an ihrem PC selbst durchzurechnen. Aus den Besprechungen: "Die Darstellung ist überall mathematisch streng und zudem ungemein anregend. Abgesehen von manchen historischen Bemerkungen ... tragen dazu die vielen mit ausführlichem Hintergrund sehr eingehend entwickelten praktischen Anwendungen bei. ... Besondere Aufmerksamkeit wird der physikalisch und technisch so wichtigen Frage nach Stabilität von Lösungen eines Systems von Differentialgleichungen gewidmet. Das Buch ist wegen seiner geringen Voraussetzungen und vorzüglichen Didaktik schon für alle Studenten des 3. Semesters geeignet; seine eminent praktische Haltung empfiehlt es aber auch für alle Physiker, die mit Differentialgleichungen und ihren Anwendungen umzugehen haben." #Physikalische Blätter#

Ruelle Operators: Functions which Are Harmonic with Respect to a Transfer Operator

Functions which are Harmonic with Respect to a Transfer Operator

DOWNLOAD NOW »

Author: Palle E. T. Jørgensen

Publisher: American Mathematical Soc.

ISBN: 0821826883

Category: Mathematics

Page: 60

View: 1853

Let $N\in\mathbb{N}$, $N\geq2$, be given. Motivated by wavelet analysis, this title considers a class of normal representations of the $C DEGREES{\ast}$-algebra $\mathfrak{A}_{N}$ on two unitary generators $U$, $V$ subject to the relation $UVU DEGREES{-1}=V DEGREES{N}$. The representations are in one-to-one correspondence with solutions $h\in L DEGREES{1}\left(\mathbb{T}\right)$, $h\geq0$, to $R\left(h\right)=h$ where $R$ is a certain transfer operator (positivity-preserving) which was studied previously by D. Ruelle. The representations of $\mathfrak{A}_{N}$ may also be viewed as representations of a certain (discrete) $N$-adic $ax+b$ group which was considered recently