Geometric Invariant Theory

DOWNLOAD NOW »

Author: David Mumford,John Fogarty,Frances Kirwan

Publisher: Springer Science & Business Media

ISBN: 9783540569633

Category: Mathematics

Page: 292

View: 8664

"Geometric Invariant Theory" by Mumford/Fogarty (the firstedition was published in 1965, a second, enlarged editonappeared in 1982) is the standard reference on applicationsof invariant theory to the construction of moduli spaces.This third, revised edition has been long awaited for by themathematical community. It is now appearing in a completelyupdated and enlarged version with an additional chapter onthe moment map by Prof. Frances Kirwan (Oxford) and a fullyupdated bibliography of work in this area.The book deals firstly with actions of algebraic groups onalgebraic varieties, separating orbits by invariants andconstructionquotient spaces; and secondly with applicationsof this theory to the construction of moduli spaces.It is a systematic exposition of the geometric aspects ofthe classical theory of polynomial invariants.

Geometric Invariant Theory and Decorated Principal Bundles

DOWNLOAD NOW »

Author: Alexander H. W. Schmitt

Publisher: European Mathematical Society

ISBN: 9783037190654

Category: Mathematics

Page: 389

View: 9452

The book starts with an introduction to Geometric Invariant Theory (GIT). The fundamental results of Hilbert and Mumford are exposed as well as more recent topics such as the instability flag, the finiteness of the number of quotients, and the variation of quotients. In the second part, GIT is applied to solve the classification problem of decorated principal bundles on a compact Riemann surface. The solution is a quasi-projective moduli scheme which parameterizes those objects that satisfy a semistability condition originating from gauge theory. The moduli space is equipped with a generalized Hitchin map. Via the usual Kobayshi-Hitchin correspondence, these moduli spaces are related to moduli spaces of solutions of certain vortex type equations. Potential applications include the study of represenation spaces of the fundamental group of compact Riemann surfaces.

Geometric Invariant Theory

Over the Real and Complex Numbers

DOWNLOAD NOW »

Author: Nolan R. Wallach

Publisher: Springer

ISBN: 3319659073

Category: Mathematics

Page: 190

View: 934

Geometric Invariant Theory (GIT) is developed in this text within the context of algebraic geometry over the real and complex numbers. This sophisticated topic is elegantly presented with enough background theory included to make the text accessible to advanced graduate students in mathematics and physics with diverse backgrounds in algebraic and differential geometry. Throughout the book, examples are emphasized. Exercises add to the reader’s understanding of the material; most are enhanced with hints. The exposition is divided into two parts. The first part, ‘Background Theory’, is organized as a reference for the rest of the book. It contains two chapters developing material in complex and real algebraic geometry and algebraic groups that are difficult to find in the literature. Chapter 1 emphasizes the relationship between the Zariski topology and the canonical Hausdorff topology of an algebraic variety over the complex numbers. Chapter 2 develops the interaction between Lie groups and algebraic groups. Part 2, ‘Geometric Invariant Theory’ consists of three chapters (3–5). Chapter 3 centers on the Hilbert–Mumford theorem and contains a complete development of the Kempf–Ness theorem and Vindberg’s theory. Chapter 4 studies the orbit structure of a reductive algebraic group on a projective variety emphasizing Kostant’s theory. The final chapter studies the extension of classical invariant theory to products of classical groups emphasizing recent applications of the theory to physics.

Lectures on Invariant Theory

DOWNLOAD NOW »

Author: Igor Dolgachev

Publisher: Cambridge University Press

ISBN: 9780521525480

Category: Mathematics

Page: 220

View: 9092

The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.

Geometric Invariant Theory for Polarized Curves

DOWNLOAD NOW »

Author: Gilberto Bini,Fabio Felici,Margarida Melo,Filippo Viviani

Publisher: Springer

ISBN: 3319113372

Category: Mathematics

Page: 211

View: 9367

We investigate GIT quotients of polarized curves. More specifically, we study the GIT problem for the Hilbert and Chow schemes of curves of degree d and genus g in a projective space of dimension d-g, as d decreases with respect to g. We prove that the first three values of d at which the GIT quotients change are given by d=a(2g-2) where a=2, 3.5, 4. We show that, for a>4, L. Caporaso's results hold true for both Hilbert and Chow semistability. If 3.5a

Quasi-projective Moduli for Polarized Manifolds

DOWNLOAD NOW »

Author: Eckart Viehweg

Publisher: Springer Science & Business Media

ISBN: 3642797458

Category: Mathematics

Page: 320

View: 2048

The concept of moduli goes back to B. Riemann, who shows in [68] that the isomorphism class of a Riemann surface of genus 9 ~ 2 depends on 3g - 3 parameters, which he proposes to name "moduli". A precise formulation of global moduli problems in algebraic geometry, the definition of moduli schemes or of algebraic moduli spaces for curves and for certain higher dimensional manifolds have only been given recently (A. Grothendieck, D. Mumford, see [59]), as well as solutions in some cases. It is the aim of this monograph to present methods which allow over a field of characteristic zero to construct certain moduli schemes together with an ample sheaf. Our main source of inspiration is D. Mumford's "Geometric In variant Theory". We will recall the necessary tools from his book [59] and prove the "Hilbert-Mumford Criterion" and some modified version for the stability of points under group actions. As in [78], a careful study of positivity proper ties of direct image sheaves allows to use this criterion to construct moduli as quasi-projective schemes for canonically polarized manifolds and for polarized manifolds with a semi-ample canonical sheaf.

Algorithms in Invariant Theory

DOWNLOAD NOW »

Author: Bernd Sturmfels

Publisher: Springer Science & Business Media

ISBN: 3211774173

Category: Mathematics

Page: 197

View: 9647

This book is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to research ideas, hints for applications, outlines and details of algorithms, examples and problems.

Invariant Theory

DOWNLOAD NOW »

Author: Mara D. Neusel

Publisher: American Mathematical Soc.

ISBN: 0821841327

Category: Mathematics

Page: 314

View: 6895

This book presents the characteristic zero invariant theory of finite groups acting linearly on polynomial algebras. The author assumes basic knowledge of groups and rings, and introduces more advanced methods from commutative algebra along the way. The theory is illustrated by numerous examples and applications to physics, engineering, numerical analysis, combinatorics, coding theory, and graph theory. A wide selection of exercises and suggestions for further reading makes the book appropriate for an advanced undergraduate or first-year graduate level course.

Classical Invariant Theory

DOWNLOAD NOW »

Author: Peter J. Olver

Publisher: Cambridge University Press

ISBN: 9780521558211

Category: Mathematics

Page: 280

View: 6646

The book is a self-contained introduction to the results and methods in classical invariant theory.

The Invariant Theory of Matrices

DOWNLOAD NOW »

Author: Corrado De Concini,Claudio Procesi

Publisher: American Mathematical Soc.

ISBN: 147044187X

Category: Invariants

Page: 153

View: 4515

This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving (1) the first fundamental theorem that describes a set of generators in the ring of invariants, and (2) the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book.

Geometric Invariant Theory

DOWNLOAD NOW »

Author: David Mumford,John Fogarty

Publisher: Springer

ISBN: N.A

Category: Geometry, Algebraic

Page: 219

View: 3817

This standard reference on applications of invariant theory to the construction of moduli spaces is a systematic exposition of the geometric aspects of classical theory of polynomial invariants. This new, revised edition is completely updated and enlarged with an additional chapter on the moment map by Professor Frances Kirwan. It includes a fully updated bibliography of work in this area.

Symmetry, Representations, and Invariants

DOWNLOAD NOW »

Author: Roe Goodman,Nolan R. Wallach

Publisher: Springer Science & Business Media

ISBN: 0387798528

Category: Mathematics

Page: 716

View: 7999

Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants: (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.

An Introduction to Invariants and Moduli

DOWNLOAD NOW »

Author: Shigeru Mukai,W. M. Oxbury

Publisher: Cambridge University Press

ISBN: 9780521809061

Category: Mathematics

Page: 503

View: 9134

Incorporated in this volume are the first two books in Mukai's series on Moduli Theory. The notion of a moduli space is central to geometry. However, it's influence is not confined there; for example the theory of moduli spaces is a crucial ingredient in the proof of Fermat's last theorem. An accurate account of Mukai's influential Japanese texts, this tranlation will be a valuable resource for researchers and graduate students working in a range of areas.

Algebraic Combinatorics and Computer Science

A Tribute to Gian-Carlo Rota

DOWNLOAD NOW »

Author: H. Crapo,D. Senato

Publisher: Springer Science & Business Media

ISBN: 8847021073

Category: Mathematics

Page: 546

View: 2263

This book, dedicated to the memory of Gian-Carlo Rota, is the result of a collaborative effort by his friends, students and admirers. Rota was one of the great thinkers of our times, innovator in both mathematics and phenomenology. I feel moved, yet touched by a sense of sadness, in presenting this volume of work, despite the fear that I may be unworthy of the task that befalls me. Rota, both the scientist and the man, was marked by a generosity that knew no bounds. His ideas opened wide the horizons of fields of research, permitting an astonishing number of students from all over the globe to become enthusiastically involved. The contagious energy with which he demonstrated his tremendous mental capacity always proved fresh and inspiring. Beyond his renown as gifted scientist, what was particularly striking in Gian-Carlo Rota was his ability to appreciate the diverse intellectual capacities of those before him and to adapt his communications accordingly. This human sense, complemented by his acute appreciation of the importance of the individual, acted as a catalyst in bringing forth the very best in each one of his students. Whosoever was fortunate enough to enjoy Gian-Carlo Rota's longstanding friendship was most enriched by the experience, both mathematically and philosophically, and had occasion to appreciate son cote de bon vivant. The book opens with a heartfelt piece by Henry Crapo in which he meticulously pieces together what Gian-Carlo Rota's untimely demise has bequeathed to science.

Frontiers in Differential Geometry, Partial Differential Equations and Mathematical Physics

In Memory of Gu Chaohao

DOWNLOAD NOW »

Author: Molin Ge,Jiaxing Hong,Tatsien Li,Weiping Zhang

Publisher: World Scientific

ISBN: 981457810X

Category: Science

Page: 372

View: 3187

This book is a collection of papers in memory of Gu Chaohao on the subjects of Differential Geometry, Partial Differential Equations and Mathematical Physics that Gu Chaohao made great contributions to with all his intelligence during his lifetime. All contributors to this book are close friends, colleagues and students of Gu Chaohao. They are all excellent experts among whom there are 9 members of the Chinese Academy of Sciences. Therefore this book will provide some important information on the frontiers of the related subjects. Contents:A Profile of the Late Professor Gu Chaohao (Tatsien Li)List of Publications of Gu ChaohaoIn Memory of Professor Gu Chaohao (Xiaqi Ding)In Memory of Professor Gu Chaohao (Gongqing Zhang (Kung-Ching Chang))Stability of E-H Mach Configuration in Pseudo-Steady Compressible Flow (Shuxing Chen)Incompressible Viscous Fluid Flows with Slip Boundary Conditions and Their Numerical Simulations (Ben-yu Guo)Global Existence and Uniqueness of the Solution for the Generalized Schrödinger-KdV System (Boling Guo, Bolin Ma & Jingjun Zhang)Anomaly Cancellation and Modularity (Fei Han, Kefeng Liu & Weiping Zhang)On Interior Estimates for Mean Curvature of Convex Surfaces in R3 and Its Applications (Jiaxing Hong)Geometric Invariant Theory of the Space — A Modern Approach to Solid Geometry (Wu-Yi Hsiang)Optimal Convergence Rate of the Binomial Tree Scheme for American Options and Their Free Boundaries (Lishang Jiang & Jin Liang)Rademacher Φ Function, Jacobi Symbols, Quantum and Classical Invariants of Lens Spaces (Bang-He Li & Tian-Jun Li)Historical Review on the Roles of Mathematics in the Study of Aerodynamics (Jiachun Li)Toward Chern–Simons Theory of Complexes on Calabi–Yau Threefolds (Jun Li)Exact Boundary Synchronization for a Coupled System of Wave Equations (Tatsien Li)Scaling Limit for Compressible Viscoelastic Fluids (Xianpeng Hu & Fang-Hua Lin)Uniqueness Modulo Reduction of Bergman Meromorphic Compactifications of Canonically Embeddable Bergman Manifolds (Ngaiming Mok)The Application of Conditional Nonlinear Optimal Perturbation to Targeted Observations for Tropical Cyclone Prediction (Mu Mu, Feifan Zhou, Xiaohao Qin & Boyu Chen)Isometric Immersions in Minkowski Spaces (Yi-Bing Shen)Remarks on Volume Growth for Minimal Graphs in Higher Codimension (Yuanlong Xin)Separation of Variables for the Lax Pair of the Bogomolny Equation in 2+1 Dimensional Anti-de Sitter Space-Time (Zi-Xiang Zhou) Readership: Mathematicians and advanced graduate students in mathematics. Key Features:In memory of the highly distinguished mathematician Gu ChaohaoThe contributors are excellent experts, including 9 members of the CASProvides some important information on Differential Geometry, Partial Differential Equations, Mathematical Physics, etcKeywords:Differential Geometry;Partial Differential Equations;Mathematical Physics

Higher-Dimensional Algebraic Geometry

DOWNLOAD NOW »

Author: Olivier Debarre

Publisher: Springer Science & Business Media

ISBN: 147575406X

Category: Mathematics

Page: 234

View: 4142

The classification theory of algebraic varieties is the focus of this book. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The authors goal is to provide an easily accessible introduction to the subject. The book starts with preparatory and standard definitions and results, then moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Moris minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well-organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction.

An Introduction to Extremal Kähler Metrics

DOWNLOAD NOW »

Author: Gábor Székelyhidi

Publisher: American Mathematical Soc.

ISBN: 1470410478

Category: Mathematics

Page: 192

View: 2945

A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.

Lie Groups

An Approach through Invariants and Representations

DOWNLOAD NOW »

Author: Claudio Procesi

Publisher: Springer Science & Business Media

ISBN: 0387289291

Category: Mathematics

Page: 600

View: 8122

Lie groups has been an increasing area of focus and rich research since the middle of the 20th century. In Lie Groups: An Approach through Invariants and Representations, the author's masterful approach gives the reader a comprehensive treatment of the classical Lie groups along with an extensive introduction to a wide range of topics associated with Lie groups: symmetric functions, theory of algebraic forms, Lie algebras, tensor algebra and symmetry, semisimple Lie algebras, algebraic groups, group representations, invariants, Hilbert theory, and binary forms with fields ranging from pure algebra to functional analysis. By covering sufficient background material, the book is made accessible to a reader with a relatively modest mathematical background. Historical information, examples, exercises are all woven into the text. This unique exposition is suitable for a broad audience, including advanced undergraduates, graduates, mathematicians in a variety of areas from pure algebra to functional analysis and mathematical physics.