Fundamentals of Predictive Text Mining

DOWNLOAD NOW »

Author: Sholom M. Weiss,Nitin Indurkhya,Tong Zhang

Publisher: Springer

ISBN: 1447167503

Category: Computers

Page: 239

View: 353

This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies. This highly anticipated second edition has been thoroughly revised and expanded with new material on deep learning, graph models, mining social media, errors and pitfalls in big data evaluation, Twitter sentiment analysis, and dependency parsing discussion. The fully updated content also features in-depth discussions on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Features: includes chapter summaries and exercises; explores the application of each method; provides several case studies; contains links to free text-mining software.

Understanding Information

From the Big Bang to Big Data

DOWNLOAD NOW »

Author: Alfons Josef Schuster

Publisher: Springer

ISBN: 3319590901

Category: Computers

Page: 237

View: 1815

The motivation of this edited book is to generate an understanding about information, related concepts and the roles they play in the modern, technology permeated world. In order to achieve our goal, we observe how information is understood in domains, such as cosmology, physics, biology, neuroscience, computer science, artificial intelligence, the Internet, big data, information society, or philosophy. Together, these observations form an integrated view so that readers can better understand this exciting building-block of modern-day society. On the surface, information is a relatively straightforward and intuitive concept. Underneath, however, information is a relatively versatile and mysterious entity. For instance, the way a physicist looks at information is not necessarily the same way as that of a biologist, a neuroscientist, a computer scientist, or a philosopher. Actually, when it comes to information, it is common that each field has its domain specific views, motivations, interpretations, definitions, methods, technologies, and challenges. With contributions by authors from a wide range of backgrounds, Understanding Information: From the Big Bang to Big Data will appeal to readers interested in the impact of ‘information’ on modern-day life from a variety of perspectives.

Foundations of Intelligent Systems

21st International Symposium, ISMIS 2014, Roskilde, Denmark, June 25-27, 2014. Proceedings

DOWNLOAD NOW »

Author: Troels Andreasen,Henning Christiansen,Juan-Carlos Cubero,Zbigniew W. Ras

Publisher: Springer

ISBN: 3319083260

Category: Computers

Page: 568

View: 8153

This book constitutes the refereed proceedings of the 21st International Symposium on Methodologies for Intelligent Systems, ISMIS 2014, held in Roskilde, Denmark, in June 2014. The 61 revised full papers were carefully reviewed and selected from 111 submissions. The papers are organized in topical sections on complex networks and data stream mining; data mining methods; intelligent systems applications; knowledge representation in databases and systems; textual data analysis and mining; special session: challenges in text mining and semantic information retrieval; special session: warehousing and OLAPing complex, spatial and spatio-temporal data; ISMIS posters.

Neuronale Netze selbst programmieren

Ein verständlicher Einstieg mit Python

DOWNLOAD NOW »

Author: Tariq Rashid

Publisher: O'Reilly

ISBN: 3960101031

Category: Computers

Page: 232

View: 7734

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Forecasting High-Frequency Volatility Shocks

An Analytical Real-Time Monitoring System

DOWNLOAD NOW »

Author: Holger Kömm

Publisher: Springer

ISBN: 3658125969

Category: Business & Economics

Page: 171

View: 1470

This thesis presents a new strategy that unites qualitative and quantitative mass data in form of text news and tick-by-tick asset prices to forecast the risk of upcoming volatility shocks. Holger Kömm embeds the proposed strategy in a monitoring system, using first, a sequence of competing estimators to compute the unobservable volatility; second, a new two-state Markov switching mixture model for autoregressive and zero-inflated time-series to identify structural breaks in a latent data generation process and third, a selection of competing pattern recognition algorithms to classify the potential information embedded in unexpected, but public observable text data in shock and nonshock information. The monitor is trained, tested, and evaluated on a two year survey on the prime standard assets listed in the indices DAX, MDAX, SDAX and TecDAX.

Text Mining in den Sozialwissenschaften

Grundlagen und Anwendungen zwischen qualitativer und quantitativer Diskursanalyse

DOWNLOAD NOW »

Author: Matthias Lemke,Gregor Wiedemann

Publisher: Springer-Verlag

ISBN: 3658072245

Category: Social Science

Page: 423

View: 6240

Die Analyse von Sprache ermöglicht Rückschlüsse auf Gesellschaft und Politik. Im Zeitalter digitaler Massenmedien liegt Sprache als maschinenlesbarer Text in einer Menge vor, die ohne Hilfsmittel nicht mehr angemessen zu bewältigen ist. Die maschinelle Auswertung von Textdaten kann in den Sozialwissenschaften, die Text bislang in der Regel qualitativ und weniger quantitativ, also sprachstatistisch, analysieren, wertvolle neue Erkenntnisse liefern. Vor diesem Hintergrund führt der Band in die Verwendung von Text Mining in den Sozialwissenschaften ein. Anhand exemplarischer Analysen eines Korpus von 3,5 Millionen Zeitungsartikeln zeigt er für konkrete Forschungsfragen, wie Text Mining angewandt werden kann.

Statistik-Workshop für Programmierer

DOWNLOAD NOW »

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 6397

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Programmverifikation

Sequentielle, parallele und verteilte Programme

DOWNLOAD NOW »

Author: Krzysztof R. Apt,Ernst-Rüdiger Olderog

Publisher: Springer-Verlag

ISBN: 3642579477

Category: Computers

Page: 258

View: 5415

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

DOWNLOAD NOW »

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 6137

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

R für Dummies

DOWNLOAD NOW »

Author: Andrie de Vries,Joris Meys

Publisher: John Wiley & Sons

ISBN: 3527812520

Category: Computers

Page: 414

View: 6822

Wollen Sie auch die umfangreichen Möglichkeiten von R nutzen, um Ihre Daten zu analysieren, sind sich aber nicht sicher, ob Sie mit der Programmiersprache wirklich zurechtkommen? Keine Sorge - dieses Buch zeigt Ihnen, wie es geht - selbst wenn Sie keine Vorkenntnisse in der Programmierung oder Statistik haben. Andrie de Vries und Joris Meys zeigen Ihnen Schritt für Schritt und anhand zahlreicher Beispiele, was Sie alles mit R machen können und vor allem wie Sie es machen können. Von den Grundlagen und den ersten Skripten bis hin zu komplexen statistischen Analysen und der Erstellung aussagekräftiger Grafiken. Auch fortgeschrittenere Nutzer finden in diesem Buch viele Tipps und Tricks, die Ihnen die Datenauswertung erleichtern.

Big Data

Die Revolution, die unser Leben verändern wird

DOWNLOAD NOW »

Author: Viktor Mayer-Schönberger,Viktor; Cukier Mayer-Schönberger

Publisher: Redline Wirtschaft

ISBN: 3864144590

Category: Political Science

Page: 288

View: 2470

Ob Kaufverhalten, Grippewellen oder welche Farbe am ehesten verrät, ob ein Gebrauchtwagen in einem guten Zustand ist – noch nie gab es eine solche Menge an Daten und noch nie bot sich die Chance, durch Recherche und Kombination in der Daten¬flut blitzschnell Zusammenhänge zu entschlüsseln. Big Data bedeutet nichts weniger als eine Revolution für Gesellschaft, Wirtschaft und Politik. Es wird die Weise, wie wir über Gesundheit, Erziehung, Innovation und vieles mehr denken, völlig umkrempeln. Und Vorhersagen möglich machen, die bisher undenkbar waren. Die Experten Viktor Mayer-Schönberger und Kenneth Cukier beschreiben in ihrem Buch, was Big Data ist, welche Möglichkeiten sich eröffnen, vor welchen Umwälzungen wir alle stehen – und verschweigen auch die dunkle Seite wie das Ausspähen von persönlichen Daten und den drohenden Verlust der Privatsphäre nicht.

Leben 3.0

Mensch sein im Zeitalter Künstlicher Intelligenz

DOWNLOAD NOW »

Author: Max Tegmark

Publisher: Ullstein Buchverlage

ISBN: 3843716706

Category: Social Science

Page: 528

View: 2995

Die Nobelpreis-Schmiede Massachusetts Institute of Technology ist der bedeutendste technologische Think Tank der USA. Dort arbeitet Professor Max Tegmark mit den weltweit führenden Entwicklern künstlicher Intelligenz zusammen, die ihm exklusive Einblicke in ihre Labors gewähren. Die Erkenntnisse, die er daraus zieht, sind atemberaubend und zutiefst verstörend zugleich. Neigt sich die Ära der Menschen dem Ende zu? Der Physikprofessor Max Tegmark zeigt anhand der neusten Forschung, was die Menschheit erwartet. Hier eine Auswahl möglicher Szenarien: - Eroberer: Künstliche Intelligenz übernimmt die Macht und entledigt sich der Menschheit mit Methoden, die wir noch nicht einmal verstehen. - Der versklavte Gott: Die Menschen bemächtigen sich einer superintelligenten künstlichen Intelligenz und nutzen sie, um Hochtechnologien herzustellen. - Umkehr: Der technologische Fortschritt wird radikal unterbunden und wir kehren zu einer prä-technologischen Gesellschaft im Stil der Amish zurück. - Selbstzerstörung: Superintelligenz wird nicht erreicht, weil sich die Menschheit vorher nuklear oder anders selbst vernichtet. - Egalitäres Utopia: Es gibt weder Superintelligenz noch Besitz, Menschen und kybernetische Organismen existieren friedlich nebeneinander. Max Tegmark bietet kluge und fundierte Zukunftsszenarien basierend auf seinen exklusiven Einblicken in die aktuelle Forschung zur künstlichen Intelligenz.

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen

DOWNLOAD NOW »

Author: Ian H. Witten,Eibe Frank

Publisher: N.A

ISBN: 9783446215337

Category:

Page: 386

View: 6443

Data Science für Dummies

DOWNLOAD NOW »

Author: Lillian Pierson

Publisher: John Wiley & Sons

ISBN: 352780675X

Category: Mathematics

Page: 382

View: 2507

Daten, Daten, Daten? Sie haben schon Kenntnisse in Excel und Statistik, wissen aber noch nicht, wie all die Datensätze helfen sollen, bessere Entscheidungen zu treffen? Von Lillian Pierson bekommen Sie das dafür notwendige Handwerkszeug: Bauen Sie Ihre Kenntnisse in Statistik, Programmierung und Visualisierung aus. Nutzen Sie Python, R, SQL, Excel und KNIME. Zahlreiche Beispiele veranschaulichen die vorgestellten Methoden und Techniken. So können Sie die Erkenntnisse dieses Buches auf Ihre Daten übertragen und aus deren Analyse unmittelbare Schlüsse und Konsequenzen ziehen.

Methoden der Textanalyse

Leitfaden und Überblick

DOWNLOAD NOW »

Author: Stefan Titscher,Ruth Wodak,Michael Meyer,Eva Vetter

Publisher: Springer-Verlag

ISBN: 3322873021

Category: Political Science

Page: 376

View: 506

Dieses Lehrbuch verwirklicht zwei Ziele: Einerseits bietet es eine Einführung in die Vorgehensweise zur wissenschaftlichen Analyse von gesprochenen oder geschriebenen Texten. Andererseits werden insgesamt 15 Methoden und Verfahren aus der Linguistik und der Soziologie dargestellt und diskutiert. Die Darstellung erfolgt nach einer einheitlichen Gliederung und ermöglicht damit einen direkten Vergleich. Umfangreiche kommentierte Literaturverweise erleichtern den vertieften Zugang zur Thematik. Damit schafft dieses Werk den derzeit umfassendsten Überblick über sozialwissenschaftliche Methoden der Textanalyse.

Programmieren lernen mit Python

DOWNLOAD NOW »

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3955618072

Category: Computers

Page: 320

View: 9753

Python ist eine moderne, interpretierte, interaktive und objektorientierte Skriptsprache, vielseitig einsetzbar und sehr beliebt. Mit mathematischen Vorkenntnissen ist Python leicht erlernbar und daher die ideale Sprache für den Einstieg in die Welt des Programmierens. Das Buch führt Sie Schritt für Schritt durch die Sprache, beginnend mit grundlegenden Programmierkonzepten, über Funktionen, Syntax und Semantik, Rekursion und Datenstrukturen bis hin zum objektorientierten Design. Zur aktualisierten Auflage Diese Auflage behandelt Python 3, geht dabei aber auch auf Unterschiede zu Python 2 ein. Außerdem wurde das Buch um die Themen Unicode, List und Dictionary Comprehensions, den Mengen-Typ Set, die String-Format-Methode und print als Funktion ergänzt. Jenseits reiner Theorie Jedes Kapitel enthält passende Übungen und Fallstudien, kurze Verständnistests und kleinere Projekte, an denen Sie die neu erlernten Programmierkonzepte gleich ausprobieren und festigen können. Auf diese Weise können Sie das Gelernte direkt anwenden und die jeweiligen Programmierkonzepte nachvollziehen. Lernen Sie Debugging-Techniken kennen Am Ende jedes Kapitels finden Sie einen Abschnitt zum Thema Debugging, der Techniken zum Aufspüren und Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in Python enthält.

Data Science mit Python

Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn

DOWNLOAD NOW »

Author: Jake VanderPlas

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958456979

Category: Computers

Page: 552

View: 8118

Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts