Methods of Modern Mathematical Physics

Functional Analysis

DOWNLOAD NOW »

Author: Michael Reed

Publisher: Elsevier

ISBN: 0323155006

Category: Science

Page: 344

View: 8733

Methods of Modern Mathematical Physics, Volume I: Functional Analysis discusses the fundamental principles of functional analysis in modern mathematical physics. This book also analyzes the influence of mathematics on physics, such as the Newtonian mechanics used to interpret all physical phenomena. Organized into eight chapters, this volume starts with an overview of the functional analysis in the study of several concrete models. This book then discusses how to generalize the Lebesgue integral to work with functions on the real line and with Borel sets. This text also explores the properties of finite-dimensional vector spaces. Other chapters discuss the normed linear spaces, which have the property of being complete. This monograph further examines the general class of topologized vector spaces and the spaces of distributions that arise in a wide variety of physical problems and functional situations. This book is a valuable resource for mathematicians and physicists. Students and researchers in the field of geometry will also find this book extremely useful.

Methods of Modern Mathematical Physics: Functional analysis

DOWNLOAD NOW »

Author: Michael Reed,Barry Simon

Publisher: Gulf Professional Publishing

ISBN: 0125850506

Category: Science

Page: 400

View: 4791

This book is the first of a multivolume series devoted to an exposition of functional analysis methods in modern mathematical physics. It describes the fundamental principles of functional analysis and is essentially self-contained, although there are occasional references to later volumes. We have included a few applications when we thought that they would provide motivation for the reader. Later volumes describe various advanced topics in functional analysis and give numerous applications in classical physics, modern physics, and partial differential equations.

I: Functional Analysis

DOWNLOAD NOW »

Author: Michael Reed,Barry Simon

Publisher: Academic Press

ISBN: 0080570488

Category: Mathematics

Page: 400

View: 650

This book is the first of a multivolume series devoted to an exposition of functional analysis methods in modern mathematical physics. It describes the fundamental principles of functional analysis and is essentially self-contained, although there are occasional references to later volumes. We have included a few applications when we thought that they would provide motivation for the reader. Later volumes describe various advanced topics in functional analysis and give numerous applications in classical physics, modern physics, and partial differential equations.

Methods of Mathematical Physics

DOWNLOAD NOW »

Author: Richard Courant,D. Hilbert

Publisher: John Wiley & Sons

ISBN: 3527617221

Category: Science

Page: 575

View: 1769

Since the first volume of this work came out in Germany in 1924, this book, together with its second volume, has remained standard in the field. Courant and Hilbert's treatment restores the historically deep connections between physical intuition and mathematical development, providing the reader with a unified approach to mathematical physics. The present volume represents Richard Courant's second and final revision of 1953.

Applied Functional Analysis

DOWNLOAD NOW »

Author: D.H. Griffel

Publisher: Courier Corporation

ISBN: 0486141322

Category: Mathematics

Page: 390

View: 5828

This introductory text examines applications of functional analysis to mechanics, fluid mechanics, diffusive growth, and approximation. Covers distribution theory, Banach spaces, Hilbert space, spectral theory, Frechet calculus, Sobolev spaces, more. 1985 edition.

Linear Functional Analysis

DOWNLOAD NOW »

Author: Bryan Rynne,M.A. Youngson

Publisher: Springer Science & Business Media

ISBN: 9781848000056

Category: Mathematics

Page: 324

View: 8932

This introduction to the ideas and methods of linear functional analysis shows how familiar and useful concepts from finite-dimensional linear algebra can be extended or generalized to infinite-dimensional spaces. Aimed at advanced undergraduates in mathematics and physics, the book assumes a standard background of linear algebra, real analysis (including the theory of metric spaces), and Lebesgue integration, although an introductory chapter summarizes the requisite material. A highlight of the second edition is a new chapter on the Hahn-Banach theorem and its applications to the theory of duality.

Representations of Finite and Compact Groups

DOWNLOAD NOW »

Author: Barry Simon

Publisher: American Mathematical Soc.

ISBN: 0821804537

Category: Mathematics

Page: 266

View: 9714

Barry Simon, I.B.M. Professor of Mathematics and Theoretical Physics at the California Institute of Technology, is the author of several books, including such classics as ""Methods of Mathematical Physics"" (with M. Reed) and ""Functional Integration and Quantum Physics"". This new book, based on courses given at Princeton, Caltech, ETH-Zurich, and other universities, is an introductory textbook on representation theory.According to the author, 'Two facets distinguish my approach. First, this book is relatively elementary, and second, while the bulk of the books on the subject is written from the point of view of an algebraist or a geometer, this book is written with an analytical flavor'. The exposition in the book centers around the study of representation of certain concrete classes of groups, including permutation groups and compact semi simple Lie groups. It culminates in the complete proof of the Weyl character formula for representations of compact Lie groups and the Frobenius formula for characters of permutation groups. Extremely well tailored both for a one-year course in representation theory and for independent study, this book is an excellent introduction to the subject which, according to the author, is unique in having 'so much innate beauty so close to the surface'.

Convexity

An Analytic Viewpoint

DOWNLOAD NOW »

Author: Barry Simon

Publisher: Cambridge University Press

ISBN: 1139497596

Category: Mathematics

Page: N.A

View: 7495

Convexity is important in theoretical aspects of mathematics and also for economists and physicists. In this monograph the author provides a comprehensive insight into convex sets and functions including the infinite-dimensional case and emphasizing the analytic point of view. Chapter one introduces the reader to the basic definitions and ideas that play central roles throughout the book. The rest of the book is divided into four parts: convexity and topology on infinite-dimensional spaces; Loewner's theorem; extreme points of convex sets and related issues, including the Krein–Milman theorem and Choquet theory; and a discussion of convexity and inequalities. The connections between disparate topics are clearly explained, giving the reader a thorough understanding of how convexity is useful as an analytic tool. A final chapter overviews the subject's history and explores further some of the themes mentioned earlier. This is an excellent resource for anyone interested in this central topic.

Quantum Mechanics for Hamiltonians Defined as Quadratic Forms

DOWNLOAD NOW »

Author: Barry Simon

Publisher: Princeton University Press

ISBN: 1400868831

Category: Science

Page: 262

View: 7919

This monograph combines a thorough introduction to the mathematical foundations of n-body Schrodinger mechanics with numerous new results. Originally published in 1971. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Nonlinear Functional Analysis

DOWNLOAD NOW »

Author: Klaus Deimling

Publisher: Springer Science & Business Media

ISBN: 3662005476

Category: Mathematics

Page: 450

View: 3524

topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in § 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical language and way of thinking, one which is no doubt familiar from elementary lectures in analysis that did not worry much about its connections with algebra and topology. Of course we shall use some elementary topological concepts, which may be new, but in fact only a few remarks here and there pertain to algebraic or differential topological concepts and methods.

Functional Analysis for Physics and Engineering

An Introduction

DOWNLOAD NOW »

Author: Hiroyuki Shima

Publisher: CRC Press

ISBN: 1482223031

Category: Mathematics

Page: 285

View: 1982

This book provides an introduction to functional analysis for non-experts in mathematics. As such, it is distinct from most other books on the subject that are intended for mathematicians. Concepts are explained concisely with visual materials, making it accessible for those unfamiliar with graduate-level mathematics. Topics include topology, vector spaces, tensor spaces, Lebesgue integrals, and operators, to name a few. Two central issues—the theory of Hilbert space and the operator theory—and how they relate to quantum physics are covered extensively. Each chapter explains, concisely, the purpose of the specific topic and the benefit of understanding it. Researchers and graduate students in physics, mechanical engineering, and information science will benefit from this view of functional analysis.

Functional Analysis

DOWNLOAD NOW »

Author: Kôsaku Yosida

Publisher: Springer Science & Business Media

ISBN: 3662117916

Category: Mathematics

Page: 468

View: 2542

A Course in Modern Mathematical Physics

Groups, Hilbert Space and Differential Geometry

DOWNLOAD NOW »

Author: Peter Szekeres

Publisher: Cambridge University Press

ISBN: 9780521829601

Category: Mathematics

Page: 600

View: 9183

This book provides an introduction to the mathematics of modern physics, presenting concepts and techniques in mathematical physics at a level suitable for advanced undergraduates and beginning graduate students. It aims to introduce the reader to modern mathematical thinking within a physics setting. Topics covered include tensor algebra, differential geometry, topology, Lie groups and Lie algebras, distribution theory, fundamental analysis and Hilbert spaces. The book includes exercises and worked examples, to test the students' understanding of the various concepts, as well as extending the themes covered in the main text.

Functional Analysis

An Elementary Introduction

DOWNLOAD NOW »

Author: Markus Haase

Publisher: American Mathematical Society

ISBN: 0821891715

Category: Mathematics

Page: 372

View: 5351

This book introduces functional analysis at an elementary level without assuming any background in real analysis, for example on metric spaces or Lebesgue integration. It focuses on concepts and methods relevant in applied contexts such as variational methods on Hilbert spaces, Neumann series, eigenvalue expansions for compact self-adjoint operators, weak differentiation and Sobolev spaces on intervals, and model applications to differential and integral equations. Beyond that, the final chapters on the uniform boundedness theorem, the open mapping theorem and the Hahn-Banach theorem provide a stepping-stone to more advanced texts. The exposition is clear and rigorous, featuring full and detailed proofs. Many examples illustrate the new notions and results. Each chapter concludes with a large collection of exercises, some of which are referred to in the margin of the text, tailor-made in order to guide the student digesting the new material. Optional sections and chapters supplement the mandatory parts and allow for modular teaching spanning from basic to honors track level.

Foundations of Modern Analysis

DOWNLOAD NOW »

Author: Avner Friedman

Publisher: Courier Corporation

ISBN: 9780486640624

Category: Mathematics

Page: 250

View: 2096

Measure and integration, metric spaces, the elements of functional analysis in Banach spaces, and spectral theory in Hilbert spaces — all in a single study. Only book of its kind. Unusual topics, detailed analyses. Problems. Excellent for first-year graduate students, almost any course on modern analysis. Preface. Bibliography. Index.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

DOWNLOAD NOW »

Author: Haim Brezis

Publisher: Springer Science & Business Media

ISBN: 0387709142

Category: Mathematics

Page: 600

View: 620

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Mathematical Physics

A Modern Introduction to Its Foundations

DOWNLOAD NOW »

Author: Sadri Hassani

Publisher: Springer Science & Business Media

ISBN: 3319011952

Category: Science

Page: 1205

View: 6975

The goal of this book is to expose the reader to the indispensable role that mathematics plays in modern physics. Starting with the notion of vector spaces, the first half of the book develops topics as diverse as algebras, classical orthogonal polynomials, Fourier analysis, complex analysis, differential and integral equations, operator theory, and multi-dimensional Green's functions. The second half of the book introduces groups, manifolds, Lie groups and their representations, Clifford algebras and their representations, and fibre bundles and their applications to differential geometry and gauge theories. This second edition is a substantial revision with a complete rewriting of many chapters and the addition of new ones, including chapters on algebras, representation of Clifford algebras, fibre bundles, and gauge theories. The spirit of the first edition, namely the balance between rigour and physical application, has been maintained, as is the abundance of historical notes and worked out examples that demonstrate the "unreasonable effectiveness of mathematics" in modern physics.

Essential Results of Functional Analysis

DOWNLOAD NOW »

Author: Robert J. Zimmer

Publisher: University of Chicago Press

ISBN: 9780226983387

Category: Mathematics

Page: 157

View: 2886

Functional analysis is a broad mathematical area with strong connections to many domains within mathematics and physics. This book, based on a first-year graduate course taught by Robert J. Zimmer at the University of Chicago, is a complete, concise presentation of fundamental ideas and theorems of functional analysis. It introduces essential notions and results from many areas of mathematics to which functional analysis makes important contributions, and it demonstrates the unity of perspective and technique made possible by the functional analytic approach. Zimmer provides an introductory chapter summarizing measure theory and the elementary theory of Banach and Hilbert spaces, followed by a discussion of various examples of topological vector spaces, seminorms defining them, and natural classes of linear operators. He then presents basic results for a wide range of topics: convexity and fixed point theorems, compact operators, compact groups and their representations, spectral theory of bounded operators, ergodic theory, commutative C*-algebras, Fourier transforms, Sobolev embedding theorems, distributions, and elliptic differential operators. In treating all of these topics, Zimmer's emphasis is not on the development of all related machinery or on encyclopedic coverage but rather on the direct, complete presentation of central theorems and the structural framework and examples needed to understand them. Sets of exercises are included at the end of each chapter. For graduate students and researchers in mathematics who have mastered elementary analysis, this book is an entrée and reference to the full range of theory and applications in which functional analysis plays a part. For physics students and researchers interested in these topics, the lectures supply a thorough mathematical grounding.