Electronic Properties of Materials

DOWNLOAD NOW »

Author: Rolf E. Hummel

Publisher: Springer

ISBN: 3642865380

Category: Technology & Engineering

Page: 0

View: 8156

Books are seldom finished. At best, they are abandoned. The second edition of "Electronic Properties of Materials" has been in use now for about seven years. During this time my publisher gave me ample opportunities to update and improve the text whenever the Ibook was reprinted. There were about six of these reprinting cycles. Eventually, however, it became clear that substantially more new material had to be added to account for the stormy developments which occurred in the field of electrical, optical, and magnetic materials. In particular, expanded sections on flat-panel displays (liquid crystals, electroluminescence devices, field emission displays, and plasma dis. : plays) were added. Further, the recent developments in blue- and green emitting LED's and in photonics are included. Magnetic storage devices also underwent rapid development. Thus, magneto-optical memories, magneto resistance devices, and new' magnetic materials needed to be covered. The sections on dielectric properties, ferroelectricity, piezoelectricity, electrostric tion, and thermoelectric properties have been expanded. Of course, the entire text was critically reviewed, updated, and improved. However, the most extensive change I undertook was the conversion of all equations to SI units throughout. In most of the world and in virtually all of the interna tional scientific journals use of this system of units is required. If today's students do not learn to utilize it, another generation is "lost" on this matter. In other words, it is important that students become comfortable with SI units.

Introduction to the Electronic Properties of Materials, 2nd Edition

DOWNLOAD NOW »

Author: David C. Jiles

Publisher: CRC Press

ISBN: 135198988X

Category: Technology & Engineering

Page: 442

View: 1579

Electronic materials provide the basis for many high tech industries that have changed rapidly in recent years. In this fully revised and updated second edition, the author discusses the range of available materials and their technological applications. Introduction to the Electronic Properties of Materials, 2nd Edition presents the principles of the behavior of electrons in materials and develops a basic understanding with minimal technical detail. Broadly based, it touches on all of the key issues in the field and offers a multidisciplinary approach spanning physics, electrical engineering, and materials science. It provides an understanding of the behavior of electrons within materials, how electrons determine the magnetic thermal, optical and electrical properties of materials, and how electronic properties are controlled for use in technological applications. Although some mathematics is essential in this area, the mathematics that is used is easy to follow and kept to an appropriate level for the reader. An excellent introductory text for undergraduate students, this book is a broad introduction to the topic and provides a careful balance of information that will be appropriate for physicists, materials scientists, and electrical engineers.

Electrical Properties of Materials

DOWNLOAD NOW »

Author: Laszlo Solymar,Donald Walsh,Richard R. A. Syms

Publisher: Oxford University Press

ISBN: 0192565567

Category: Technology & Engineering

Page: 512

View: 4379

An informal and highly accessible writing style, a simple treatment of mathematics, and clear guide to applications have made this book a classic text in electrical and electronic engineering. The fundamental ideas relevant to the understanding of the electrical properties of materials are emphasized; in addition, topics are selected in order to explain the operation of devices having applications (or possible future applications) in engineering. The mathematics, kept deliberately to a minimum, is well within the grasp of undergraduate students. This is achieved by choosing the simplest model that can display the essential properties of a phenomenom, and then examining the difference between the ideal and the actual behaviour. The whole text is designed as an undergraduate course. However most individual sections are self contained and can be used as background reading in graduate courses, and for interested persons who want to explore advances in microelectronics, lasers, nanotechnology, and several other topics that impinge on modern life.

Band Theory and Electronic Properties of Solids

DOWNLOAD NOW »

Author: John Singleton

Publisher: OUP Oxford

ISBN: 0191057460

Category: Science

Page: 240

View: 3147

This book provides an introduction to band theory and the electronic properties of materials at a level suitable for final-year undergraduates or first-year graduate students. It sets out to provide the vocabulary and quantum-mechanical training necessary to understand the electronic, optical and structural properties of the materials met in science and technology and describes some of the experimental techniques which are used to study band structure today. In order to leave space for recent developments, the Drude model and the introduction of quantum statistics are treated synoptically. However, Bloch's theorem and two tractable limits, a very weak periodic potential and the tight-binding model, are developed rigorously and in three dimensions. Having introduced the ideas of bands, effective masses and holes, semiconductor and metals are treated in some detail, along with the newer ideas of artificial structures such as super-lattices and quantum wells, layered organic substances and oxides. Some recent `hot topics' in research are covered, e.g. the fractional Quantum Hall Effect and nano-devices, which can be understood using the techniques developed in the book. In illustrating examples of e.g. the de Haas-van Alphen effect, the book focuses on recent experimental data, showing that the field is a vibrant and exciting one. References to many recent review articles are provided, so that the student can conduct research into a chosen topic at a deeper level. Several appendices treating topics such as phonons and crystal structure make the book self-contained introduction to the fundamentals of band theory and electronic properties in condensed matter physic today.

Photonic and Electronic Properties of Fluoride Materials

Progress in Fluorine Science Series

DOWNLOAD NOW »

Author: Alain Tressaud,Kenneth R. Poeppelmeier

Publisher: Elsevier

ISBN: 0128017953

Category: Science

Page: 530

View: 5931

Photonic and Electronic Properties of Fluoride Materials: Progress in Fluorine Science, the first volume in this new Elsevier series, provides an overview of the important optical, magnetic, and non-linear properties of fluoride materials. Beginning with a brief review of relevant synthesis methods from single crystals to nanopowders, this volume offers valuable insight for inorganic chemistry and materials science researchers. Edited and written by leaders in the field, this book explores the practical aspects of working with these materials, presenting a large number of examples from inorganic fluorides in which the type of bonding occurring between fluorine and transition metals (either d- or 4f-series) give rise to peculiar properties in many fundamental and applicative domains. This one-of-a-kind resource also includes several chapters covering functional organic fluorides used in nano-electronics, in particular in liquid crystal devices, in organic light-emitting diodes, or in organic dyes for sensitized solar cells. The book describes major advances and breakthroughs achieved by the use of fluoride materials in important domains such as superconductivity, luminescence, laser properties, multiferroism, transport properties, and more recently, in fluoro-perovskite for dye-sensitized solar cells and inorganic fluoride materials for NLO, and supports future development in these varied and key areas. The book is edited by Alain Tressaud, past chair and founder of the CNRS French Fluorine Network. Each book in the collection includes the work of highly-respected volume editors and contributors from both academia and industry to bring valuable and varied content to this active field. Provides unique coverage of the physical properties of fluoride materials for chemists and material scientists Begins with a brief review of relevant synthesis methods from single crystals to nanopowders Includes valuable information about functional organic fluorides used in nano-electronics, in particular in liquid crystal devices, in organic light-emitting diodes, or in organic dyes for sensitized solar cells

Electronic Properties of Engineering Materials

DOWNLOAD NOW »

Author: James D. Livingston

Publisher: Wiley

ISBN: 9780471316275

Category: Technology & Engineering

Page: 336

View: 9322

It includes both chemical and physical approaches to the properties of solids, and clearly separates those aspects of materials properties that can be tackled with classical physics from those that require quantum mechanics. * Quantum mechanics are introduced later to allow readers to be familiar with some of the mathematics necessary for quantum mechanics before being exposed to its bewildering fundamental concepts. * Discusses the electronic properties of solids from the viewpoint of elementary band theory, and end with a brief treatment of semiconductors and some semiconducting devices.

Electronic Properties of Materials

A Guide to the Literature Volume Two, Part One Volume 1 / Volume 2 /

DOWNLOAD NOW »

Author: D.L. Grigsby,D.H. Johnson,M. Neuberger,S.J. Welles

Publisher: Springer Science & Business Media

ISBN: 1475708424

Category: Technology & Engineering

Page: 1778

View: 5626

Electrical and Magnetic Properties of Materials

DOWNLOAD NOW »

Author: W. Bolton

Publisher: Addison-Wesley Longman

ISBN: 9780582070257

Category: Electricity

Page: 238

View: 9097

Written for students taking BTEC HNC and HND courses in electrical and electronic engineering, this book introduces the electric and magnetic properties of materials. It ranges from the basic concepts of atomic structure to the electrical properties of metals, semiconductors and insulators.

Electronic Structure of Materials

DOWNLOAD NOW »

Author: Adrian P. Sutton

Publisher: Clarendon Press

ISBN: 0191588539

Category:

Page: 276

View: 4437

This book describes the modern real-space approach to electronic structures and properties of crystalline and non-crystalline materials in a form readily accessible to undergraduates in materials science, physics, and chemistry. - ;This book describes the modern real-space approach to electronic structures and properties of crystalline and non-crystalline materials in a form readily accessible to undergraduates in materials science, physics, and chemistry. -

Electronic Properties of Crystalline Solids

An Introduction to Fundamentals

DOWNLOAD NOW »

Author: Richard Bube

Publisher: Elsevier

ISBN: 0323146651

Category: Science

Page: 540

View: 9667

Electronic Properties of Crystalline Solids: An Introduction to Fundamentals discusses courses in the electronic properties of solids taught in the Department of Materials Science and Engineering at Stanford University. The book starts with a brief review of classical wave mechanics, discussing concept of waves and their role in the interactions of electrons, phonons, and photons. The book covers the free electron model for metals, and the origin, derivation, and properties of allowed and forbidden energy bands for electrons in crystalline materials. It also examines transport phenomena and optical effects in crystalline materials, including electrical conductivity, scattering phenomena, thermal conductivity, Hall and thermoelectric effects, magnetoresistance, optical absorption, photoconductivity, and other photoelectronic effects in both ideal and real materials. This book is intended for upper-level undergraduates in a science major, or for first- or second-year graduate students with an interest in the scientific basis for our understanding of properties of materials.

Extended Defects in Semiconductors

Electronic Properties, Device Effects and Structures

DOWNLOAD NOW »

Author: D. B. Holt,B. G. Yacobi

Publisher: Cambridge University Press

ISBN: 1139463594

Category: Science

Page: N.A

View: 6835

The elucidation of the effects of structurally extended defects on electronic properties of materials is especially important in view of the current advances in electronic device development that involve defect control and engineering at the nanometer level. This book surveys the properties, effects, roles and characterization of extended defects in semiconductors. The basic properties of extended defects (dislocations, stacking faults, grain boundaries, and precipitates) are outlined, and their effect on the electronic properties of semiconductors, their role in semiconductor devices, and techniques for their characterization are discussed. These topics are among the central issues in the investigation and applications of semiconductors and in the operation of semiconductor devices. The authors preface their treatment with an introduction to semiconductor materials and conclude with a chapter on point defect maldistributions. This text is suitable for advanced undergraduate and graduate students in materials science and engineering, and for those studying semiconductor physics.