Dynamical Systems

DOWNLOAD NOW »

Author: Shlomo Sternberg

Publisher: Courier Corporation

ISBN: 0486135144

Category: Mathematics

Page: 272

View: 7255

A pioneer in the field of dynamical systems discusses one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials include PowerPoint slides and MATLAB exercises. 2010 edition.

Invitation to Dynamical Systems

DOWNLOAD NOW »

Author: Edward R. Scheinerman

Publisher: Courier Corporation

ISBN: 0486275329

Category: Mathematics

Page: 408

View: 4112

This text is designed for those who wish to study mathematics beyond linear algebra but are unready for abstract material. Rather than a theorem-proof-corollary exposition, it stresses geometry, intuition, and dynamical systems. 1996 edition.

Curvature in Mathematics and Physics

DOWNLOAD NOW »

Author: Shlomo Sternberg

Publisher: Courier Corporation

ISBN: 0486292711

Category: Mathematics

Page: 416

View: 3604

Expert treatment introduces semi-Riemannian geometry and its principal physical application, Einstein's theory of general relativity, using the Cartan exterior calculus as a principal tool. Prerequisites include linear algebra and advanced calculus. 2012 edition.

Introduction to the Modern Theory of Dynamical Systems

DOWNLOAD NOW »

Author: Anatole Katok,Boris Hasselblatt

Publisher: Cambridge University Press

ISBN: 9780521575577

Category: Mathematics

Page: 802

View: 8915

This book provides a self-contained comprehensive exposition of the theory of dynamical systems. The book begins with a discussion of several elementary but crucial examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate and up.

Dynamical Systems

An Introduction

DOWNLOAD NOW »

Author: Luis Barreira,Claudia Valls

Publisher: Springer Science & Business Media

ISBN: 1447148355

Category: Mathematics

Page: 209

View: 1957

The theory of dynamical systems is a broad and active research subject with connections to most parts of mathematics. Dynamical Systems: An Introduction undertakes the difficult task to provide a self-contained and compact introduction. Topics covered include topological, low-dimensional, hyperbolic and symbolic dynamics, as well as a brief introduction to ergodic theory. In particular, the authors consider topological recurrence, topological entropy, homeomorphisms and diffeomorphisms of the circle, Sharkovski's ordering, the Poincaré-Bendixson theory, and the construction of stable manifolds, as well as an introduction to geodesic flows and the study of hyperbolicity (the latter is often absent in a first introduction). Moreover, the authors introduce the basics of symbolic dynamics, the construction of symbolic codings, invariant measures, Poincaré's recurrence theorem and Birkhoff's ergodic theorem. The exposition is mathematically rigorous, concise and direct: all statements (except for some results from other areas) are proven. At the same time, the text illustrates the theory with many examples and 140 exercises of variable levels of difficulty. The only prerequisites are a background in linear algebra, analysis and elementary topology. This is a textbook primarily designed for a one-semester or two-semesters course at the advanced undergraduate or beginning graduate levels. It can also be used for self-study and as a starting point for more advanced topics.

Dynamical Systems and Chaos

DOWNLOAD NOW »

Author: Henk Broer,Floris Takens

Publisher: Springer Science & Business Media

ISBN: 9781441968708

Category: Mathematics

Page: 313

View: 3196

Over the last four decades there has been extensive development in the theory of dynamical systems. This book aims at a wide audience where the first four chapters have been used for an undergraduate course in Dynamical Systems. Material from the last two chapters and from the appendices has been used quite a lot for master and PhD courses. All chapters are concluded by an exercise section. The book is also directed towards researchers, where one of the challenges is to help applied researchers acquire background for a better understanding of the data that computer simulation or experiment may provide them with the development of the theory.

Introduction to Nonlinear Differential and Integral Equations

DOWNLOAD NOW »

Author: Harold Thayer Davis

Publisher: Courier Corporation

ISBN: 9780486609713

Category: Mathematics

Page: 566

View: 6275

Topics covered include differential equations of the 1st order, the Riccati equation and existence theorems, 2nd order equations, elliptic integrals and functions, nonlinear mechanics, nonlinear integral equations, more. Includes 137 problems.

Introduction to Dynamical Systems

DOWNLOAD NOW »

Author: Michael Brin,Garrett Stuck

Publisher: Cambridge University Press

ISBN: 9781139433976

Category: Mathematics

Page: N.A

View: 8356

This book provides a broad introduction to the subject of dynamical systems, suitable for a one- or two-semester graduate course. In the first chapter, the authors introduce over a dozen examples, and then use these examples throughout the book to motivate and clarify the development of the theory. Topics include topological dynamics, symbolic dynamics, ergodic theory, hyperbolic dynamics, one-dimensional dynamics, complex dynamics, and measure-theoretic entropy. The authors top off the presentation with some beautiful and remarkable applications of dynamical systems to such areas as number theory, data storage, and Internet search engines. This book grew out of lecture notes from the graduate dynamical systems course at the University of Maryland, College Park, and reflects not only the tastes of the authors, but also to some extent the collective opinion of the Dynamics Group at the University of Maryland, which includes experts in virtually every major area of dynamical systems.

Ordinary Differential Equations and Dynamical Systems

DOWNLOAD NOW »

Author: Gerald Teschl

Publisher: American Mathematical Soc.

ISBN: 0821883283

Category: Mathematics

Page: 356

View: 3584

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm-Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincare-Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman-Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale-Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

A First Course in Discrete Dynamical Systems

DOWNLOAD NOW »

Author: Richard A. Holmgren

Publisher: Springer Science & Business Media

ISBN: 1441987320

Category: Mathematics

Page: 223

View: 1328

Given the ease with which computers can do iteration it is now possible for almost anyone to generate beautiful images whose roots lie in discrete dynamical systems. Images of Mandelbrot and Julia sets abound in publications both mathematical and not. The mathematics behind the pictures are beautiful in their own right and are the subject of this text. Mathematica programs that illustrate the dynamics are included in an appendix.

Chaotic Dynamics of Nonlinear Systems

DOWNLOAD NOW »

Author: S. Neil Rasband

Publisher: Courier Dover Publications

ISBN: 0486795993

Category: Science

Page: 240

View: 1685

Introduction to the concepts, applications, theory, and technique of chaos. Suitable for advanced undergraduates and graduate students and researchers. Requires familiarity with differential equations and linear vector spaces. 1990 edition.

Differential Equations and Dynamical Systems

DOWNLOAD NOW »

Author: Lawrence Perko

Publisher: Springer Science & Business Media

ISBN: 1461300037

Category: Mathematics

Page: 557

View: 7155

This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations.

Nonlinear Differential Equations and Dynamical Systems

DOWNLOAD NOW »

Author: Ferdinand Verhulst

Publisher: Springer Science & Business Media

ISBN: 3642614531

Category: Mathematics

Page: 306

View: 3302

For lecture courses that cover the classical theory of nonlinear differential equations associated with Poincare and Lyapunov and introduce the student to the ideas of bifurcation theory and chaos, this text is ideal. Its excellent pedagogical style typically consists of an insightful overview followed by theorems, illustrative examples, and exercises.

Handbook of Dynamic System Modeling

DOWNLOAD NOW »

Author: Paul A. Fishwick

Publisher: CRC Press

ISBN: 9781420010855

Category: Mathematics

Page: 760

View: 5699

The topic of dynamic models tends to be splintered across various disciplines, making it difficult to uniformly study the subject. Moreover, the models have a variety of representations, from traditional mathematical notations to diagrammatic and immersive depictions. Collecting all of these expressions of dynamic models, the Handbook of Dynamic System Modeling explores a panoply of different types of modeling methods available for dynamical systems. Featuring an interdisciplinary, balanced approach, the handbook focuses on both generalized dynamic knowledge and specific models. It first introduces the general concepts, representations, and philosophy of dynamic models, followed by a section on modeling methodologies that explains how to portray designed models on a computer. After addressing scale, heterogeneity, and composition issues, the book covers specific model types that are often characterized by specific visual- or text-based grammars. It concludes with case studies that employ two well-known commercial packages to construct, simulate, and analyze dynamic models. A complete guide to the fundamentals, types, and applications of dynamic models, this handbook shows how systems function and are represented over time and space and illustrates how to select a particular model based on a specific area of interest.

Introduction to Applied Nonlinear Dynamical Systems and Chaos

DOWNLOAD NOW »

Author: Stephen Wiggins

Publisher: Springer Science & Business Media

ISBN: 1475740670

Category: Mathematics

Page: 672

View: 6401

This volume is an introduction to applied nonlinear dynamics and chaos. The emphasis is on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains an extensive bibliography and a detailed glossary of terms.

An Introduction to Dynamical Systems

Continuous and Discrete

DOWNLOAD NOW »

Author: Rex Clark Robinson

Publisher: American Mathematical Soc.

ISBN: 0821891359

Category: Mathematics

Page: 733

View: 2101

This book gives a mathematical treatment of the introduction to qualitative differential equations and discrete dynamical systems. The treatment includes theoretical proofs, methods of calculation, and applications. The two parts of the book, continuous time of differential equations and discrete time of dynamical systems, can be covered independently in one semester each or combined together into a year long course. The material on differential equations introduces the qualitative or geometric approach through a treatment of linear systems in any dimension. There follows chapters where equilibria are the most important feature, where scalar (energy) functions is the principal tool, where periodic orbits appear, and finally, chaotic systems of differential equations. The many different approaches are systematically introduced through examples and theorems. The material on discrete dynamical systems starts with maps of one variable and proceeds to systems in higher dimensions. The treatment starts with examples where the periodic points can be found explicitly and then introduces symbolic dynamics to analyze where they can be shown to exist but not given in explicit form. Chaotic systems are presented both mathematically and more computationally using Lyapunov exponents. With the one-dimensional maps as models, the multidimensional maps cover the same material in higher dimensions. This higher dimensional material is less computational and more conceptual and theoretical. The final chapter on fractals introduces various dimensions which is another computational tool for measuring the complexity of a system. It also treats iterated function systems which give examples of complicated sets. In the second edition of the book, much of the material has been rewritten to clarify the presentation. Also, some new material has been included in both parts of the book. This book can be used as a textbook for an advanced undergraduate course on ordinary differential equations and/or dynamical systems. Prerequisites are standard courses in calculus (single variable and multivariable), linear algebra, and introductory differential equations.

Introduction to Dynamic Systems

Theory, Models, and Applications

DOWNLOAD NOW »

Author: David G. Luenberger

Publisher: Wiley

ISBN: N.A

Category: Science

Page: 464

View: 3123

Integrates the traditional approach to differential equations with the modern systems and control theoretic approach to dynamic systems, emphasizing theoretical principles and classic models in a wide variety of areas. Provides a particularly comprehensive theoretical development that includes chapters on positive dynamic systems and optimal control theory. Contains numerous problems.

The Art of Modeling Dynamic Systems

Forecasting for Chaos, Randomness and Determinism

DOWNLOAD NOW »

Author: Foster Morrison

Publisher: Courier Corporation

ISBN: 0486131718

Category: Mathematics

Page: 416

View: 1933

This text illustrates the roles of statistical methods, coordinate transformations, and mathematical analysis in mapping complex, unpredictable dynamical systems. It describes the benefits and limitations of the available modeling tools, showing engineers and scientists how any system can be rendered simpler and more predictable. Written by a well-known authority in the field, this volume employs practical examples and analogies to make models more meaningful. The more universal methods appear in considerable detail, and advanced dynamic principles feature easy-to-understand examples. The text draws careful distinctions between mathematical abstractions and observable realities. Additional topics include the role of pure mathematics, the limitations of numerical methods, forecasting in the presence of chaos and randomness, and dynamics without calculus. Specialized techniques and case histories are coordinated with a carefully selected and annotated bibliography. The original edition was a Library of Science Main Selection in May, 1991. This new Dover edition features corrections by the author and a new Preface.

Nonlinear Dynamical Systems and Control

A Lyapunov-Based Approach

DOWNLOAD NOW »

Author: Wassim M. Haddad,VijaySekhar Chellaboina

Publisher: Princeton University Press

ISBN: 1400841046

Category: Mathematics

Page: 944

View: 9599

Nonlinear Dynamical Systems and Control presents and develops an extensive treatment of stability analysis and control design of nonlinear dynamical systems, with an emphasis on Lyapunov-based methods. Dynamical system theory lies at the heart of mathematical sciences and engineering. The application of dynamical systems has crossed interdisciplinary boundaries from chemistry to biochemistry to chemical kinetics, from medicine to biology to population genetics, from economics to sociology to psychology, and from physics to mechanics to engineering. The increasingly complex nature of engineering systems requiring feedback control to obtain a desired system behavior also gives rise to dynamical systems. Wassim Haddad and VijaySekhar Chellaboina provide an exhaustive treatment of nonlinear systems theory and control using the highest standards of exposition and rigor. This graduate-level textbook goes well beyond standard treatments by developing Lyapunov stability theory, partial stability, boundedness, input-to-state stability, input-output stability, finite-time stability, semistability, stability of sets and periodic orbits, and stability theorems via vector Lyapunov functions. A complete and thorough treatment of dissipativity theory, absolute stability theory, stability of feedback systems, optimal control, disturbance rejection control, and robust control for nonlinear dynamical systems is also given. This book is an indispensable resource for applied mathematicians, dynamical systems theorists, control theorists, and engineers.

Ordinary Differential Equations

DOWNLOAD NOW »

Author: Jack K. Hale

Publisher: Courier Corporation

ISBN: 0486472116

Category: Mathematics

Page: 361

View: 1744

This rigorous treatment prepares readers for the study of differential equations and shows them how to research current literature. It emphasizes nonlinear problems and specific analytical methods. 1969 edition.