Doing Data Science

Straight Talk from the Frontline

DOWNLOAD NOW »

Author: Cathy O'Neil,Rachel Schutt

Publisher: "O'Reilly Media, Inc."

ISBN: 144936389X

Category: Computers

Page: 408

View: 5296

Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

Angriff der Algorithmen

Wie sie Wahlen manipulieren, Berufschancen zerstören und unsere Gesundheit gefährden

DOWNLOAD NOW »

Author: Cathy O'Neil

Publisher: Carl Hanser Verlag GmbH Co KG

ISBN: 3446257780

Category: Political Science

Page: 336

View: 2384

Algorithmen nehmen Einfluss auf unser Leben: Von ihnen hängt es ab, ob man etwa einen Kredit für sein Haus erhält und wie viel man für die Krankenversicherung bezahlt. Cathy O’Neil, ehemalige Hedgefonds-Managerin und heute Big-Data-Whistleblowerin, erklärt, wie Algorithmen in der Theorie objektive Entscheidungen ermöglichen, im wirklichen Leben aber mächtigen Interessen folgen. Algorithmen nehmen Einfluss auf die Politik, gefährden freie Wahlen und manipulieren über soziale Netzwerke sogar die Demokratie. Cathy O’Neils dringlicher Appell zeigt, wie sie Diskriminierung und Ungleichheit verstärken und so zu Waffen werden, die das Fundament unserer Gesellschaft erschüttern.

Data Science für Dummies

DOWNLOAD NOW »

Author: Lillian Pierson

Publisher: John Wiley & Sons

ISBN: 352780675X

Category: Mathematics

Page: 382

View: 2958

Daten, Daten, Daten ?, Sie haben schon Kenntnisse in Excel und Statistik, wissen aber noch nicht, wie all die Datensï¿1⁄2tze helfen sollen, bessere Entscheidungen zu treffen? Von Lillian Pierson bekommen Sie das dafï¿1⁄2r notwendige Handwerkszeug: Bauen Sie Ihre Kenntnisse in Statistik, Programmierung und Visualisierung aus. Nutzen Sie Python, R, SQL, Excel und KNIME. Zahlreiche Beispiele veranschaulichen die vorgestellten Methoden und Techniken. So kï¿1⁄2nnen Sie die Erkenntnisse dieses Buches auf Ihre Daten ï¿1⁄2bertragen und aus deren Analyse unmittelbare Schlï¿1⁄2sse und Konsequenzen ziehen.

R in a Nutshell

DOWNLOAD NOW »

Author: Joseph Adler

Publisher: O'Reilly Germany

ISBN: 3897216507

Category: Computers

Page: 768

View: 3630

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

DOWNLOAD NOW »

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 4566

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

big data @ work

Chancen erkennen, Risiken verstehen

DOWNLOAD NOW »

Author: Thomas H. Davenport

Publisher: Vahlen

ISBN: 3800648156

Category: Fiction

Page: 214

View: 8310

Big Data in Unternehmen. Dieses neue Buch gibt Managern ein umfassendes Verständnis dafür, welche Bedeutung Big Data für Unternehmen zukünftig haben wird und wie Big Data tatsächlich genutzt werden kann. Am Ende jedes Kapitels aktivieren Fragen, selbst nach Lösungen für eine erfolgreiche Implementierung und Nutzung von Big Data im eigenen Unternehmen zu suchen. Die Schwerpunkte - Warum Big Data für Sie und Ihr Unternehmen wichtig ist - Wie Big Data Ihre Arbeit, Ihr Unternehmen und Ihre Branche verändern - - wird - Entwicklung einer Big Data-Strategie - Der menschliche Aspekt von Big Data - Technologien für Big Data - Wie Sie erfolgreich mit Big Data arbeiten - Was Sie von Start-ups und Online-Unternehmen lernen können - Was Sie von großen Unternehmen lernen können: Big Data und Analytics 3.0 Der Experte Thomas H. Davenport ist Professor für Informationstechnologie und -management am Babson College und Forschungswissenschaftler am MIT Center for Digital Business. Zudem ist er Mitbegründer und Forschungsdirektor am International Institute for Analytics und Senior Berater von Deloitte Analytics.

Statistik-Workshop für Programmierer

DOWNLOAD NOW »

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 4212

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Big Data

Die Revolution, die unser Leben verändern wird

DOWNLOAD NOW »

Author: Viktor Mayer-Schönberger,Viktor; Cukier Mayer-Schönberger

Publisher: Redline Wirtschaft

ISBN: 3864144590

Category: Political Science

Page: 288

View: 553

Ob Kaufverhalten, Grippewellen oder welche Farbe am ehesten verrät, ob ein Gebrauchtwagen in einem guten Zustand ist – noch nie gab es eine solche Menge an Daten und noch nie bot sich die Chance, durch Recherche und Kombination in der Daten¬flut blitzschnell Zusammenhänge zu entschlüsseln. Big Data bedeutet nichts weniger als eine Revolution für Gesellschaft, Wirtschaft und Politik. Es wird die Weise, wie wir über Gesundheit, Erziehung, Innovation und vieles mehr denken, völlig umkrempeln. Und Vorhersagen möglich machen, die bisher undenkbar waren. Die Experten Viktor Mayer-Schönberger und Kenneth Cukier beschreiben in ihrem Buch, was Big Data ist, welche Möglichkeiten sich eröffnen, vor welchen Umwälzungen wir alle stehen – und verschweigen auch die dunkle Seite wie das Ausspähen von persönlichen Daten und den drohenden Verlust der Privatsphäre nicht.

Hello World!

Programmieren für Kids und andere Anfänger

DOWNLOAD NOW »

Author: Warren Sande,Carter Sande

Publisher: Carl Hanser Verlag GmbH Co KG

ISBN: 3446438149

Category: Computers

Page: 501

View: 6077

HELLO WORLD// - Alle Erklärungen der Konzepte in einfacher Sprache - Sehr viele Bilder, Cartoons und lustige Beispiele - Umfassende Fragen und Aufgaben zum Üben und Lernen - Farbig illustriert In diesem Buch lernst Du, mit dem Computer in seiner Sprache zu sprechen. Willst du ein Spiel erfinden? Eine Firma gründen? Ein wichtiges Problem lösen? Als ersten Schritt lernst Du, eigene Programme zu schreiben. Programmieren ist eine tolle Herausforderung, und dieses Buch macht Dir den Einstieg leicht. Diese neue Ausgabe von Hello World! zeigt Dir in einfacher und ansprechender Weise die Welt der Computerprogrammierung. Warren Sande hat es gemeinsam mit seinem Sohn Carter geschrieben, und sie haben sich auch viele lustige Beispiele ausgedacht, mit denen Du prima lernen kannst. Das Buch wurde von Pädagogen überarbeitet und eignet sich für Kinder genauso wie für ihre Eltern. Du brauchst keine Programmierkenntnisse mitzubringen, sondern nur zu wissen, wie man einen Computer bedient. Wenn Du ein Programm starten und eine Datei speichern kannst, reicht das schon! Hello World! arbeitet mit Python. Diese Programmiersprache ist besonders leicht zu erlernen. Mit den humorvollen Beispielen lernst Du die Grundlagen des Programmierens kennen, wie z.B. Schleifen, Entscheidungen, Eingaben und Ausgaben, Datenstrukturen, Grafiken und vieles mehr. AUS DEM INHALT // Speicher und Variablen // Datentypen // GUIs – Grafische Benutzeroberflächen // Immer diese Entscheidungen // Schleifen // Nur für dich – Kommentare // Geschachtelte und variable Schleifen // Listen und Wörterbücher // Funktionen // Objekte // Module // Sprites und Kollisionserkennung // Ereignisse // Sound // Ausgabeformatierung und Strings // Das Zufallsprinzip // Computersimulationen

Visualize This!

DOWNLOAD NOW »

Author: Nathan Yau

Publisher: John Wiley & Sons

ISBN: 3527760229

Category: Statistics / Graphic methods / Data processing

Page: 422

View: 5906

A guide on how to visualise and tell stories with data, providing practical design tips complemented with step-by-step tutorials.

OpenOffice für Kids

DOWNLOAD NOW »

Author: Hans-Georg Schumann

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3826676246

Category: Computers

Page: 336

View: 2435

Aus dem Inhalt: OpenOffice installieren Textketten mit OpenOffice Writer Der erste Text: ein Brief Das passende Layout Ein Referat mit Format Textgestaltung Zahlenteppiche mit OpenOffice Calc Zellen mit Zahlen Prozent und Zins Tabellen und Diagramme Datensätze mit OpenOffice Base Felder und Formulare Linienmuster mit OpenOffice Draw Zeichnen und Gestalten Folienstapel mit OpenOffice Impress Präsentationen Mit OpenOffice kannst du dir auf deinem PC dein eigenes Büro einrichten: Vom Textverarbeitungsprogramm über Tabellenkalkulation bis hin zum Zeichenprogramm bietet dir OpenOffice alles, was du für einen funktionstüchtigen Arbeitsplatz benötigst – und dabei kommt der Spaß nicht zu kurz! Hans-Georg Schumann gibt dir einen tollen Einblick in die vielen Anwendungsbereiche des kostenlosen OpenOffice. Zunächst widmet er sich der Textverarbeitung mit OpenOffice Writer. Du erfährst, wie du Briefe schreibst und eine Bewerbung verfasst. Anhand eines Referates kannst du schon bald die schönen Layout-Funktionen und andere Gestaltungsmittel einsetzen. Mit OpenOffice Calc erstellst du Tabellen frei nach deinen Wünschen, lernst ganz nebenbei mit Formeln umzugehen und erfährst etwas über Geldvermehrung. Eine kleine Datenbank mit OpenOffice Base ermöglicht dir das Starten von Abfragen und Erstellen von Berichten. Deiner Kreativität kannst du freien Lauf lassen, wenn du es mit OpenOffice Draw zu tun bekommst. Und deine Lehrer und Mitschülern lassen sich mit einer Präsentation von Text und Bildern beeindrucken. Über den Autor: Hans-Georg Schumann ist Informatik- und Mathematiklehrer an einer Gesamtschule. Er hat bereits viele erfolgreiche Bücher in der Reihe »... für Kids« geschrieben. Ab 10 Jahre, aber auch für Erwachsene, die eine wirklich einfache Einführung suchen

Data Science mit Python

Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn

DOWNLOAD NOW »

Author: Jake VanderPlas

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958456979

Category: Computers

Page: 552

View: 4443

Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts

R für Dummies

DOWNLOAD NOW »

Author: Andrie de Vries,Robert Leidenfrost

Publisher: John Wiley & Sons

ISBN: 3527812520

Category: Computers

Page: 414

View: 9379

Die Berechnung der Zukunft

Warum die meisten Prognosen falsch sind und manche trotzdem zutreffen - Der New York Times Bestseller

DOWNLOAD NOW »

Author: Nate Silver

Publisher: Heyne Verlag

ISBN: 3641112702

Category: Business & Economics

Page: 656

View: 6913

Zuverlässige Vorhersagen sind doch möglich! Nate Silver ist der heimliche Gewinner der amerikanischen Präsidentschaftswahlen 2012: ein begnadeter Statistiker, als »Prognose-Popstar« und »Wundernerd« weltberühmt geworden. Er hat die Wahlergebnisse aller 50 amerikanischen Bundesstaaten absolut exakt vorausgesagt – doch damit nicht genug: Jetzt zeigt Nate Silver, wie seine Prognosen in Zukunft Terroranschläge, Umweltkatastrophen und Finanzkrisen verhindern sollen. Gelingt ihm die Abschaffung des Zufalls? Warum werden Wettervorhersagen immer besser, während die Terrorattacken vom 11.09.2001 niemand kommen sah? Warum erkennen Ökonomen eine globale Finanzkrise nicht einmal dann, wenn diese bereits begonnen hat? Das Problem ist nicht der Mangel an Informationen, sondern dass wir die verfügbaren Daten nicht richtig deuten. Zuverlässige Prognosen aber würden uns helfen, Zufälle und Ungewissheiten abzuwehren und unser Schicksal selbst zu bestimmen. Nate Silver zeigt, dass und wie das geht. Erstmals wendet er seine Wahrscheinlichkeitsrechnung nicht nur auf Wahlprognosen an, sondern auf die großen Probleme unserer Zeit: die Finanzmärkte, Ratingagenturen, Epidemien, Erdbeben, den Klimawandel, den Terrorismus. In all diesen Fällen gibt es zahlreiche Prognosen von Experten, die er überprüft – und erklärt, warum sie meist falsch sind. Gleichzeitig schildert er, wie es gelingen kann, im Rauschen der Daten die wesentlichen Informationen herauszufiltern. Ein unterhaltsamer und spannender Augenöffner!

Einführung in Python

DOWNLOAD NOW »

Author: Mark Lutz,David Ascher,Dinu C. Gherman

Publisher: O'Reilly Germany

ISBN: 3897214881

Category: Python (Computer program language)

Page: 624

View: 2177

Data Science Thinking

The Next Scientific, Technological and Economic Revolution

DOWNLOAD NOW »

Author: Longbing Cao

Publisher: Springer

ISBN: 3319950924

Category: Computers

Page: 390

View: 1941

This book explores answers to the fundamental questions driving the research, innovation and practices of the latest revolution in scientific, technological and economic development: how does data science transform existing science, technology, industry, economy, profession and education? How does one remain competitive in the data science field? What is responsible for shaping the mindset and skillset of data scientists? Data Science Thinking paints a comprehensive picture of data science as a new scientific paradigm from the scientific evolution perspective, as data science thinking from the scientific-thinking perspective, as a trans-disciplinary science from the disciplinary perspective, and as a new profession and economy from the business perspective. The topics cover an extremely wide spectrum of essential and relevant aspects of data science, spanning its evolution, concepts, thinking, challenges, discipline, and foundation, all the way to industrialization, profession, education, and the vast array of opportunities that data science offers. The book's three parts each detail layers of these different aspects. The book is intended for decision-makers, data managers (e.g., analytics portfolio managers, business analytics managers, chief data analytics officers, chief data scientists, and chief data officers), policy makers, management and decision strategists, research leaders, and educators who are responsible for pursuing new scientific, innovation, and industrial transformation agendas, enterprise strategic planning, a next-generation profession-oriented course development, as well as those who are involved in data science, technology, and economy from an advanced perspective. Research students in data science-related courses and disciplines will find the book useful for positing their innovative scientific journey, planning their unique and promising career, and competing within and being ready for the next generation of science, technology, and economy.

Ökonometrie für Dummies

DOWNLOAD NOW »

Author: Roberto Pedace

Publisher: John Wiley & Sons

ISBN: 3527801529

Category: Business & Economics

Page: 388

View: 3244

?konometrie; nicht nur der Begriff ist etwas sperrig, auch die Inhalte erschlie?en sich nicht jedem sofort. Wichtig und interessant ist sie aber trotzdem. Roberto Pedace erkl?rt Ihnen, worum es in der ?konometrie geht, wie Sie Test-Hypothesen aufstellen und vieles mehr. Er erl?utert, wie Sie mit Regressionsmodellen arbeiten und mit diskreten und abh?ngigen Variablen umgehen. Gegen Ende des Buches geht er ?ber die Basismodelle hinaus und f?hrt Sie in statische und dynamische Modelle sowie die Kunst der Vorhersagen ein.

From Big Data to Big Profits

Success with Data and Analytics

DOWNLOAD NOW »

Author: Russell Walker

Publisher: Oxford University Press

ISBN: 0190260696

Category: Computers

Page: 352

View: 1873

Technological advancements in computing have changed how data is leveraged by businesses to develop, grow, and innovate. In recent years, leading analytical companies have begun to realize the value in their vast holdings of customer data and have found ways to leverage this untapped potential. Now, more firms are following suit and looking to monetize Big Data for big profits. Such changes will have implications for both businesses and consumers in the coming years. In From Big Data to Big Profits, Russell Walker investigates the use of Big Data to stimulate innovations in operational effectiveness and business growth. Walker examines the nature of Big Data and how businesses can use it to create new monetization opportunities. Using case studies of Apple, Netflix, Google, LinkedIn, Zillow, Amazon, and other leaders in the use of Big Data, Walker explores how digital platforms such as mobile apps and social networks are changing the nature of customer interactions and the way Big Data is created and used by companies. Such changes, as Walker points out, will require careful consideration of legal and unspoken business practices as they affect consumer privacy. Companies looking to develop a Big Data strategy will find great value in the SIGMA framework, which he has developed to assess companies for Big Data readiness and provide direction on the steps necessary to get the most from Big Data. Rigorous and meticulous, From Big Data to Big Profits is a valuable resource for students, researchers, and professionals with an interest in Big Data, digital platforms, and analytics