Differential Topology and Quantum Field Theory

DOWNLOAD NOW »

Author: Charles Nash

Publisher: Elsevier

ISBN: 9780125140768

Category: Mathematics

Page: 386

View: 8503

The remarkable developments in differential topology and how these recent advances have been applied as a primary research tool in quantum field theory are presented here in a style reflecting the genuinely two-sided interaction between mathematical physics and applied mathematics. The author, following his previous work (Nash/Sen: Differential Topology for Physicists, Academic Press, 1983), covers elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory. The explanatory approach serves to illuminate and clarify these theories for graduate students and research workers entering the field for the first time. Treats differential geometry, differential topology, and quantum field theory Includes elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory Tackles problems of quantum field theory using differential topology as a tool

Topological Quantum Field Theory and Four Manifolds

DOWNLOAD NOW »

Author: Jose Labastida,Marcos Marino

Publisher: Springer Science & Business Media

ISBN: 1402031777

Category: Science

Page: 224

View: 951

The emergence of topological quantum ?eld theory has been one of the most important breakthroughs which have occurred in the context of ma- ematical physics in the last century, a century characterizedbyindependent developments of the main ideas in both disciplines, physics and mathematics, which has concluded with two decades of strong interaction between them, where physics, as in previous centuries, has acted as a source of new mat- matics. Topological quantum ?eld theories constitute the core of these p- nomena, although the main drivingforce behind it has been the enormous e?ort made in theoretical particle physics to understand string theory as a theory able to unify the four fundamental interactions observed in nature. These theories set up a new realm where both disciplines pro?t from each other. Although the most striking results have appeared on the mathema- calside,theoreticalphysicshasclearlyalsobene?tted,sincethecorresponding developments have helped better to understand aspects of the fundamentals of ?eld and string theory.

Low-Dimensional Topology and Quantum Field Theory

DOWNLOAD NOW »

Author: Hugh Osborn

Publisher: Springer Science & Business Media

ISBN: 1489916121

Category: Science

Page: 324

View: 3939

The motivations, goals and general culture of theoretical physics and mathematics are different. Most practitioners of either discipline have no necessity for most of the time to keep abreast of the latest developments in the other. However on occasion newly developed mathematical concepts become relevant in theoretical physics and the less rigorous theoretical physics framework may prove valuable in understanding and suggesting new theorems and approaches in pure mathematics. Such interdis ciplinary successes invariably cause much rejoicing, as over a prodigal son returned. In recent years the framework provided by quantum field theory and functional in tegrals, developed over half a century in theoretical physics, have proved a fertile soil for developments in low dimensional topology and especially knot theory. Given this background it was particularly pleasing that NATO was able to generously sup port an Advanced Research Workshop to be held in Cambridge, England from 6th to 12th September 1992 with the title Low Dimensional Topology and Quantum Field Theory. Although independently organised this overlapped as far as some speak ers were concerned with a longer term programme with the same title organised by Professor M Green, Professor E Corrigan and Dr R Lickorish. The contents of this proceedings of the workshop demonstrate the breadth of topics now of interest on the interface between theoretical physics and mathematics as well as the sophistication of the mathematical tools required in current theoretical physics.

Geometric and Topological Methods for Quantum Field Theory

DOWNLOAD NOW »

Author: Hernan Ocampo,Eddy Pariguan,Sylvie Paycha

Publisher: Cambridge University Press

ISBN: 113948673X

Category: Science

Page: N.A

View: 6364

Aimed at graduate students in physics and mathematics, this book provides an introduction to recent developments in several active topics at the interface between algebra, geometry, topology and quantum field theory. The first part of the book begins with an account of important results in geometric topology. It investigates the differential equation aspects of quantum cohomology, before moving on to noncommutative geometry. This is followed by a further exploration of quantum field theory and gauge theory, describing AdS/CFT correspondence, and the functional renormalization group approach to quantum gravity. The second part covers a wide spectrum of topics on the borderline of mathematics and physics, ranging from orbifolds to quantum indistinguishability and involving a manifold of mathematical tools borrowed from geometry, algebra and analysis. Each chapter presents introductory material before moving on to more advanced results. The chapters are self-contained and can be read independently of the rest.

Geometry, Topology and Quantum Field Theory

DOWNLOAD NOW »

Author: P. Bandyopadhyay

Publisher: Springer Science & Business Media

ISBN: 9781402014147

Category: Science

Page: 220

View: 3685

This is a monograph on geometrical and topological features which arise in quantum field theory. It is well known that when a chiral fermion interacts with a gauge field we have chiral anomaly which corresponds to the fact that divergence of the axial vector current does not vanish. It is observed that this is related to certain topological features associated with the fermion and leads to the realization of the topological origin of fermion number as well as the Berry phase. The role of gauge fields in the quantization procedure has its implications in these topological features of a fermion and helps us to consider a massive fermion as a soliton (skyrrnion). In this formalism chiral anomaly is found to be responsible for mass generation. This has its relevance in electroweak theory where it is observed that weak interaction gauge bosons attain mass topologically. The geometrical feature of a skyrmion also helps us to realize the internal symmetry of hadrons from reflection group. Finally it has been shown that noncommutative geometry where the space time manifold is taken to be X = M x Zz has its relevance in the description of a massive 4 fermion as a skyrmion when the discrete space is considered as the internal space and the symmetry breaking leads to chiral anomaly. In chap. l preliminary mathematical formulations related to the spinor structure have been discussed. In chap.

Conformal Field Theory and Topology

DOWNLOAD NOW »

Author: Toshitake Kohno

Publisher: American Mathematical Soc.

ISBN: 9780821821305

Category: Mathematics

Page: 172

View: 3886

The aim of this book is to provide the reader with an introduction to conformal field theory and its applications to topology. The author starts with a description of geometric aspects of conformal field theory based on loop groups. By means of the holonomy of conformal field theory he defines topological invariants for knots and 3-manifolds. He also gives a brief treatment of Chern-Simons perturbation theory.

Differentialgeometrie, Topologie und Physik

DOWNLOAD NOW »

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 8514

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

Geometric, Algebraic and Topological Methods for Quantum Field Theory

Proceedings of the 2013 Villa de Leyva Summer School

DOWNLOAD NOW »

Author: Leonardo Cano,Alexander Cardona,Hern Ocampo,Andr F Reyes Lega

Publisher: World Scientific

ISBN: 9814730890

Category: Mathematics

Page: 384

View: 7397

Based on lectures held at the 8th edition of the series of summer schools in Villa de Leyva since 1999, this book presents an introduction to topics of current interest at the interface of geometry, algebra, analysis, topology and theoretical physics. It is aimed at graduate students and researchers in physics or mathematics, and offers an introduction to the topics discussed in the two weeks of the summer school: operator algebras, conformal field theory, black holes, relativistic fluids, Lie groupoids and Lie algebroids, renormalization methods, spectral geometry and index theory for pseudo-differential operators.

Geometry and Quantum Field Theory

DOWNLOAD NOW »

Author: Daniel S. Freed,Karen K. Uhlenbeck,American Mathematical Society,Institute for Advanced Study (Princeton, N.J.)

Publisher: American Mathematical Soc.

ISBN: 9780821886830

Category: Science

Page: 459

View: 8354

The first title in a new series, this book explores topics from classical and quantum mechanics and field theory. The material is presented at a level between that of a textbook and research papers making it ideal for graduate students. The book provides an entree into a field that promises to remain exciting and important for years to come.

Geometric and Topological Methods for Quantum Field Theory

DOWNLOAD NOW »

Author: Alexander Cardona,Sylvie Paycha,Hernan Ocampo

Publisher: World Scientific

ISBN: 9814487678

Category: Mathematics

Page: 492

View: 9062

This volume offers an introduction to recent developments in several active topics of research at the interface between geometry, topology and quantum field theory. These include Hopf algebras underlying renormalization schemes in quantum field theory, noncommutative geometry with applications to index theory on one hand and the study of aperiodic solids on the other, geometry and topology of low dimensional manifolds with applications to topological field theory, Chern-Simons supergravity and the anti de Sitter/conformal field theory correspondence. It comprises seven lectures organized around three main topics, noncommutative geometry, topological field theory, followed by supergravity and string theory, complemented by some short communications by young participants of the school. Contents:Noncommutative Geometry:Hopf Algebras in Noncommutative Geometry (J C Várilly)The Noncommutative Geometry of Aperiodic Solids (J Bellissard)Noncommutative Geometry and Abstract Integration Theory (M-T Benameur)Topological Field Theory:Introduction to Quantum Invariants of 3-Manifolds, Topological Quantum Field Theories and Modular Categories (C Blanchet)An Introduction to Donaldson–Witten Theory (M Mariño)Supergravity and String Theory:(Super)-Gravities Beyond 4 Dimensions (J Zanelli)Introductory Lectures on String Theory and the AdS/CFT Correspondence (A Pankiewicz & S Theisen)Short Communications:Group Contractions and Its Consequences Upon Representations of Different Spatial Symmetry Groups (M Ayala-Sánchez & R W Haase)Phase Anomalies as Trace Anomalies in Chern–Simons Theory (A Cardona)Deligne Cohomology for Orbifolds, Discrete Torsion and B-Fields (E Lupercio & B Uribe) Readership: Graduate students and researchers in theoretical and mathematical physics, as well as geometry and topology. Keywords:

Proceedings of the Summer School Geometric and Topological Methods for Quantum Field Theory

Villa de Leyva, Colombia, 9-27 July 2001

DOWNLOAD NOW »

Author: Alexander Cardona

Publisher: World Scientific

ISBN: 9789812705068

Category: Algebraic topology

Page: 482

View: 6476

This volume offers an introduction to recent developments in several active topics of research at the interface between geometry, topology and quantum field theory. These include Hopf algebras underlying renormalization schemes in quantum field theory, noncommutative geometry with applications to index theory on one hand and the study of aperiodic solids on the other, geometry and topology of low dimensional manifolds with applications to topological field theory, Chern-Simons supergravity and the anti de Sitter/conformal field theory correspondence. It comprises seven lectures organized around three main topics, noncommutative geometry, topological field theory, followed by supergravity and string theory, complemented by some short communications by young participants of the school.

Quantum Field Theory for Mathematicians

DOWNLOAD NOW »

Author: Robin Ticciati,Robin (Maharishi University of Management Ticciati, Iowa)

Publisher: Cambridge University Press

ISBN: 9780521632652

Category: Mathematics

Page: 699

View: 9459

This should be a useful reference for anybody with an interest in quantum theory.

Quantum Topology

DOWNLOAD NOW »

Author: Louis H Kauffman,Randy A Baadhio

Publisher: World Scientific

ISBN: 9814502677

Category: Science

Page: 392

View: 1500

This book constitutes a review volume on the relatively new subject of Quantum Topology. Quantum Topology has its inception in the 1984/1985 discoveries of new invariants of knots and links (Jones, Homfly and Kauffman polynomials). These invariants were rapidly connected with quantum groups and methods in statistical mechanics. This was followed by Edward Witten's introduction of methods of quantum field theory into the subject and the formulation by Witten and Michael Atiyah of the concept of topological quantum field theories. This book is a review volume of on-going research activity. The papers derive from talks given at the Special Session on Knot and Topological Quantum Field Theory of the American Mathematical Society held at Dayton, Ohio in the fall of 1992. The book consists of a self-contained article by Kauffman, entitled Introduction to Quantum Topology and eighteen research articles by participants in the special session. This book should provide a useful source of ideas and results for anyone interested in the interface between topology and quantum field theory. Contents:Introduction to Quantum Topology (L H Kauffman)Knot Theory, Exotic Spheres and Global Gravitational Anomalies (R A Baadhio)A Diagrammatic Theory of Knotted Surfaces (J S Carter & M Saito)A Categorical Construction of 4D Topological Quantum Field Theories (L Crane & D Yetter)Evaluating the Crane-Yetter Invariant (L Crane, L H Kauffman & D Yetter)A Method for Computing the Arf Invariants of Links (P Gilmer)Triangulations, Categories and Extended Topological Field Theories (R J Lawrence)The Casson Invariant for Two-Fold Branched Covers of Links (D Mullins)Elementary Conjectures in Classical Knot Theory (J H Przytycki)Knot Polynomials as States of Nonperturbative Four Dimensional Quantum Gravity (J Pullin)On Invariants of 3-Manifolds Derived from Abelian Groups (J Mattes, M M Polyak & N Reshetikhin)and other papers Readership: Mathematicians and mathematical physicists. keywords:Quantum Topology;Topological Quantum Field Theory;Meeting;AMS Special Session;Dayton, OH (USA)

Quantum Field Theory and Noncommutative Geometry

DOWNLOAD NOW »

Author: Ursula Carow-Watamura,Yoshiaki Maeda

Publisher: Springer Science & Business Media

ISBN: 9783540239000

Category: Mathematics

Page: 297

View: 1854

This volume reflects the growing collaboration between mathematicians and theoretical physicists to treat the foundations of quantum field theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lectures and talks that have been given at a recent meeting on "Quantum Field Theory and Noncommutative Geometry." A considerable effort has been invested in making the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field.

Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners

DOWNLOAD NOW »

Author: Thomas Kerler,Volodymyr V. Lyubashenko

Publisher: Springer

ISBN: 3540446257

Category: Mathematics

Page: 383

View: 9513

This book presents the (to date) most general approach to combinatorial constructions of topological quantum field theories (TQFTs) in three dimensions. The authors describe extended TQFTs as double functors between two naturally defined double categories: one of topological nature, made of 3-manifolds with corners, the other of algebraic nature, made of linear categories, functors, vector spaces and maps. Atiyah's conventional notion of TQFTs as well as the notion of modular functor from axiomatic conformal field theory are unified in this concept. A large class of such extended modular catergory is constructed, assigning a double functor to every abelian modular category, which does not have to be semisimple.

Algebraic Foundations of Non-Commutative Differential Geometry and Quantum Groups

DOWNLOAD NOW »

Author: Ludwig Pittner

Publisher: Springer Science & Business Media

ISBN: 3540478019

Category: Science

Page: 469

View: 6004

Quantum groups and quantum algebras as well as non-commutative differential geometry are important in mathematics and considered to be useful tools for model building in statistical and quantum physics. This book, addressing scientists and postgraduates, contains a detailed and rather complete presentation of the algebraic framework. Introductory chapters deal with background material such as Lie and Hopf superalgebras, Lie super-bialgebras, or formal power series. Great care was taken to present a reliable collection of formulae and to unify the notation, making this volume a useful work of reference for mathematicians and mathematical physicists.

Topology and Geometry for Physicists

DOWNLOAD NOW »

Author: Charles Nash,Siddhartha Sen

Publisher: N.A

ISBN: 9780486478524

Category: Mathematics

Page: 311

View: 4740

Originally published: New York: Academic Press, 1983.

Anomalies in Quantum Field Theory

DOWNLOAD NOW »

Author: Reinhold A. Bertlmann

Publisher: Oxford University Press

ISBN: 9780198507628

Category: Science

Page: 566

View: 3798

An anomaly is the failure of classical symmetry to survive the process of quantization and regularization. The study of anomalies is the key to a deeper understanding of quantum field theory and has played an increasingly important role in the theory over the past 20 years. This text presents all the different aspects of the study of anomalies in an accessible and self-contained way. Much emphasis is now being placed on the formulation of the theory using the mathematical ideas of differential geometry and topology. This approach is followed here, and the derivations and calculations are given explicitly as an aid to students. Topics discussed include the relevant ideas from differential geometry and topology and the application of these paths (path integrals, differential forms, homotopy operators, etc.) to the study of anomalies. Chapters are devoted to abelian and nonabelian anomalies, consistent and covariant anomalies, and gravitational anomalies. The comprehensive overview of the theory presented in this book will be useful to both students and researchers.