Discipline-Specific Writing

Theory into practice


Author: John Flowerdew,Tracey Costley

Publisher: Routledge

ISBN: 1315518996

Category: Education

Page: 218

View: 9718

Discipline-Specific Writing provides an introduction and guide to the teaching of this topic for students and trainee teachers. This book highlights the importance of discipline-specific writing as a critical area of competence for students, and covers both the theory and practice of teaching this crucial topic. With chapters from practitioners and researchers working across a wide range of contexts around the world, Discipline-Specific Writing: Explores teaching strategies in a variety of specific areas including science and technology, social science and business; Discusses curriculum development, course design and assessment, providing a framework for the reader; Analyses the teaching of language features including grammar and vocabulary for academic writing; Demonstrates the use of genre analysis, annotated bibliographies and corpora as tools for teaching; Provides practical suggestions for use in the classroom, questions for discussion and additional activities with each chapter. Discipline-Specific Writing is key reading for students taking courses in English for Specific Purposes, Applied Linguistics, TESOL, TEFL and CELTA.

Creativity and Discovery in the University Writing Class

A Teacher's Guide


Author: Alice Chik,Tracey Costley,Martha C. Pennington

Publisher: Equinox

ISBN: 9781781791059

Category: Education

Page: 256

View: 5851

The teaching of writing is an important area of study. Whether as a supplementary or a required course offered in a university or other higher education English department, an English language centre, or a private language school, writing at university level is a critical area of study and competence for all students pursuing academic studies. Creativity and Discovery in the University Writing Class: A Teacher's Guide presents ideas for teaching writing at university level which recognize the need in the current world to be continually innovating in response to rapidly changing student populations and conditions, including advances in media and writing technologies. The volume emphasizes the creativity of all forms of writing and the important role of discovery in teaching, learning, and the acquisition of knowledge of all kinds. The volume brings together distinguished scholars in writing pedagogy from different educational and cultural contexts who took part in a Summer Institute on Creativity and Discovery in the Teaching of Writing at City University of Hong Kong in June 2013. Designed for teachers of writing based on lectures and workshops given at the summer institute, the collection offers both theoretical insights and practical suggestions for classroom activities that teachers of writing will be able to go to for materials and guidance.

Teaching Information Literacy and Writing Studies: Upper-level and graduate courses


Author: Grace Veach

Publisher: Purdue Information Literacy Ha

ISBN: 155753831X

Category: Education

Page: 309

View: 9943

This volume, edited by Grace Veach, explores leading approaches to teaching information literacy and writing studies in upper-level and graduate courses. Contributors describe cross-disciplinary and collaborative efforts underway across higher education, during a time when "fact" or "truth" is less important than fitting a predetermined message. Topics include: working with varied student populations, teaching information literacy and writing in upper-level general education and disciplinary courses, specialized approaches for graduate courses, and preparing graduate assistants to teach information literacy.

Creative Contradictions in Education

Cross Disciplinary Paradoxes and Perspectives


Author: Ronald A. Beghetto,Bharath Sriraman

Publisher: Springer

ISBN: 3319219243

Category: Education

Page: 354

View: 3363

Creative Contradictions in Education is a provocative collection of essays by international experts who tackle difficult questions about creativity in education from a cross-disciplinary perspective. The contributors to this volume examine and provide fresh insights into the tensions and contradictions that researchers and educators face when attempting to understand and apply creativity in educational contexts. Creativity in education is surrounded by many contradictions. Teachers generally value creativity, but question the role it can and should play in their classroom. Many educators find themselves feeling caught between the push to promote students’ creative thinking skills and the pull to meet external curricular mandates, increased performance monitoring, and various other curricular constraints. This book brings together leading experts who provide fresh, cross-disciplinary insights into how creative contradictions in education might be addressed. Contributors will draw from existing empirical and theoretical work, but push beyond “what currently is” and comment on future possibilities. This includes challenging the orthodoxy of traditional conceptions of creativity in education or making a case for maintaining particular orthodoxies.

Kid's Box Starter Teacher's Book


Author: Lucy Frino,Caroline Nixon,Michael Tomlinson

Publisher: Cambridge University Press

ISBN: 1107690323

Category: Foreign Language Study

Page: 143

View: 8134

A new edition of this popular course for young learners - now seven levels including Starter. Well-loved by children and teachers the world over, Kid's Box is bursting with bright ideas to inspire you and your pupils. Perfect for general use, the course also fully covers the syllabus of the Cambridge Young Learners English (YLE) tests, preparing your students for success at Starters, Movers and Flyers. The interleaved Teacher's Book contains comprehensive notes, as well as extra activities, photocopiable pages and classroom ideas to inspire both teacher and students.

Abschied vom IQ

die Rahmen-Theorie der vielfachen Intelligenzen


Author: Howard Gardner

Publisher: Klett-Cotta

ISBN: 9783608931587

Category: Multiple intelligences

Page: 395

View: 9807

Responding to Learner Diversity and Learning Difficulties


Author: Dennis Conrad,Stacey Blackman

Publisher: IAP

ISBN: 1641133341

Category: Education

Page: 459

View: 5545

Caribbean Discourse in Inclusive Education Volume II “Responding to Learner Diversity and Learner Difficulties” shares selected critical reflections and recommendations on the way educational communities respond to student diversity and difficulties learning. These contexts include the Caribbean, the Diaspora, and beyond. Authors explore issues and strategies for realizing and sustaining the agenda of education for all within primarily, but not limited to, the Caribbean. While the authors are aware of the ongoing debate between the terms ‘education for all’ and ‘inclusive education’, we use these terms interchangeably. We hold the position that inclusive education is about commitment to removing barriers to optimum learning for all learners regardless of age, ability, ethnicity, gender, geography, race, religion, sexual orientation or other differences. ‘Responding to Learner Diversity and Difficulties’ extend the discourse to include stakeholders committed to sharing their experiences and strategies for overcoming barriers to inclusive education. This second volume presents research that examines how teachers can respond to students with disabilities and difficulties learning, teach challenging curriculum content in mathematics and literacy, build citizenship through student voice, improve teacher practice via co-teaching and critical reflection, promote inclusive practice through leadership and advocacy. It can be used as a core text or companion reader for students at the undergraduate and graduate levels, lecturers, practitioners, researchers and policy makers.

Advanced Nanomaterials and Their Applications in Renewable Energy


Author: Jingbo Louise Liu,Sajid Bashir

Publisher: Elsevier

ISBN: 0128017082

Category: Technology & Engineering

Page: 436

View: 5617

Advanced Nanomaterials and Their Applications in Renewable Energy presents timely topics related to nanomaterials' feasible synthesis and characterization, and their application in the energy fields. In addition, the book provides insights and scientific discoveries in toxicity study, with information that is easily understood by a wide audience. Advanced energy materials are important in designing materials that have greater physical, electronic, and optical properties. This book emphasizes the fundamental physics and chemistry underlying the techniques used to develop solar and fuel cells with high charge densities and energy conversion efficiencies. New analytical techniques (synchronous X-ray) which probe the interactions of particles and radiation with matter are also explored, making this book an invaluable reference for practitioners and those interested in the science. Provides a comprehensive review of solar energy, fuel cells, and gas storage from 2010 to the present Reviews feasible synthesis and modern analytical techniques used in alternative energy Explores examples of research in alternative energy, including current assessments of nanomaterials and safety Contains a glossary of terms, units, and historical benchmarks Presents a useful guide that will bring readers up to speed on historical developments in alternative fuel cells

Meetings Abstracts, January-August 2006

Ocean Sciences Meeting, Honolulu, Hawaii, 20-24 February 2006; Joint Assembly, Baltimore, Maryland, 23-26 May 2006; Western Pacific Geophysics Meeting, Beijing, China, 24-27 July 2006


Author: N.A

Publisher: N.A


Category: Aquatic sciences

Page: N.A

View: 8670

Das Mind-Map-Buch

Die beste Methode zur Steigerung Ihres geistigen Potenzials


Author: Tony Buzan

Publisher: MVG Verlag

ISBN: 3864155274

Category: Psychology

Page: 304

View: 5779

Mit der Mind-Map-Methode® halten Sie den Schlüssel zu einem einzigartigen Denkwerkzeug in den Händen, mit dem Sie mühelos und effizient Ihr Gedächtnis, Ihre Kreativität, Ihre Konzentration, Ihre Kommunikationsfähigkeit, Ihre allgemeine Intelligenz und Ihre mentale Schnelligkeit verbessern können. Angewandt auf jedwede Herausforderung oder Zielsetzung, werden Ihnen Mind-Maps dabei helfen, - klar, kreativ und originell zu denken, - Probleme zu lösen und fundierte Entscheidungen zu treffen, - zu planen und zu verhandeln, - Ihre Gedächtnisleistung zu maximieren, - Ihr Leben erfolgreich zu strukturieren. Ihr Gehirn ist dazu imstande, Großartiges zu leisten – lernen Sie mithilfe des Mind-Map- Buchs, Ihr Potenzial auszuschöpfen!

Gemeinsamer europäischer Referenzrahmen für Sprachen: lernen, lehren, beurteilen


Author: John Trim,Brian North,Daniel Coste

Publisher: N.A

ISBN: 9783126065207


Page: 244

View: 962

Der Referenzrahmen richtet sich an Lehrer, Fortbilder, Autoren und Curriculumplaner in der Schule und der Erwachsenenbildung. Der Gemeinsame europäische Referenzrahmen für Sprachen stellt die gemeinsamen Referenzniveaus zur Erfassung des Lernfortschritts vor, befasst sich mit der Entwicklung von Curricula und diskutiert verschiedene Prüfungsformen.

Qualitative Research & Evaluation Methods


Author: Michael Quinn Patton

Publisher: SAGE

ISBN: 9780761919711

Category: Science

Page: 598

View: 9850

The book that has been a resource and training tool for countless applied researchers, evaluators, and graduate students has been completely revised with hundreds of new examples and stories illuminating all aspects of qualitative inquiry. Patton has created the most comprehensive, systematic and up-to-date review of qualitative methods available. Patton has retained and expanded upon the Exhibits that highlight and summarize major issues and guidelines, the summative sections, tables, and figures as well as the sage advice of the Sufi Master, Halcolm. This revision will help readers integrate and make sense of the great volume of qualitative works published in the past decade.

Wie kleine Kinder schlau werden

selbständiges Lernen im Alltag


Author: John Caldwell Holt

Publisher: N.A

ISBN: 9783407228550


Page: 232

View: 4486

Ausgehend von der Beobachtung des kindlichen Spielens erläutert der Autor, wie Kinder denken und lernen.

Python: Real World Machine Learning


Author: Prateek Joshi,John Hearty,Bastiaan Sjardin,Luca Massaron,Alberto Boschetti

Publisher: Packt Publishing Ltd

ISBN: 1787120678

Category: Computers

Page: 941

View: 6762

Learn to solve challenging data science problems by building powerful machine learning models using Python About This Book Understand which algorithms to use in a given context with the help of this exciting recipe-based guide This practical tutorial tackles real-world computing problems through a rigorous and effective approach Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This Learning Path is for Python programmers who are looking to use machine learning algorithms to create real-world applications. It is ideal for Python professionals who want to work with large and complex datasets and Python developers and analysts or data scientists who are looking to add to their existing skills by accessing some of the most powerful recent trends in data science. Experience with Python, Jupyter Notebooks, and command-line execution together with a good level of mathematical knowledge to understand the concepts is expected. Machine learning basic knowledge is also expected. What You Will Learn Use predictive modeling and apply it to real-world problems Understand how to perform market segmentation using unsupervised learning Apply your new-found skills to solve real problems, through clearly-explained code for every technique and test Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms Increase predictive accuracy with deep learning and scalable data-handling techniques Work with modern state-of-the-art large-scale machine learning techniques Learn to use Python code to implement a range of machine learning algorithms and techniques In Detail Machine learning is increasingly spreading in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. Machine learning is transforming the way we understand and interact with the world around us. In the first module, Python Machine Learning Cookbook, you will learn how to perform various machine learning tasks using a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. The second module, Advanced Machine Learning with Python, is designed to take you on a guided tour of the most relevant and powerful machine learning techniques and you'll acquire a broad set of powerful skills in the area of feature selection and feature engineering. The third module in this learning path, Large Scale Machine Learning with Python, dives into scalable machine learning and the three forms of scalability. It covers the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. This Learning Path will teach you Python machine learning for the real world. The machine learning techniques covered in this Learning Path are at the forefront of commercial practice. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Python Machine Learning Cookbook by Prateek Joshi Advanced Machine Learning with Python by John Hearty Large Scale Machine Learning with Python by Bastiaan Sjardin, Alberto Boschetti, Luca Massaron Style and approach This course is a smooth learning path that will teach you how to get started with Python machine learning for the real world, and develop solutions to real-world problems. Through this comprehensive course, you'll learn to create the most effective machine learning techniques from scratch and more!

Forschergeist in Windeln

Wie Ihr Kind die Welt begreift


Author: Alison Gopnik,Patricia Kuhl,Andrew Meltzoff

Publisher: N.A

ISBN: 9783492261487


Page: 291

View: 9276

Chemistry the Central Science, 13th Ed, Pearson Education, 2015

Chemistry the Central Science


Author: Brown-LeMay-Bursten-Murphy-Woodward-Stoltzfus

Publisher: Bukupedia


Category: Juvenile Nonfiction

Page: 1246

View: 4468

To the Instructor Philosophy We authors of Chemistry: The Central Science are delighted and honored that you have chosen us as your instructional partners for your general chemistry class. We have all been active researchers who appreciate both the learning and the discovery aspects of the chemical sciences. We have also all taught general chemistry many times. Our varied, wide-ranging experiences have formed the basis of the close collaborations we have enjoyed as coauthors. In writing our book, our focus is on the students: we try to ensure that the text is not only accurate and up-to-date but also clear and readable. We strive to convey the breadth of chemistry and the excitement that scientists experience in making new discoveries that contribute to our understanding of the physical world. We want the student to appreciate that chemistry is not a body of specialized knowledge that is separate from most aspects of modern life, but central to any attempt to address a host of societal concerns, including renewable energy, environmental sustainability, and improved human health. Publishing the thirteenth edition of this text bespeaks an exceptionally long record of successful textbook writing. We are appreciative of the loyalty and support the book has received over the years, and mindful of our obligation to justify each new edition. We begin our approach to each new edition with an intensive author retreat, in which we ask ourselves the deep questions that we must answer before we can move forward. What justifies yet another edition? What is changing in the world not only of chemistry, but with respect to science education and the qualities of the students we serve? The answer lies only partly in the changing face of chemistry itself. The introduction of many new technologies has changed the landscape in the teaching of sciences at all levels. The use of the Internet in accessing information and presenting learning materials has markedly changed the role of the textbook as one element among many tools for student learning. Our challenge as authors is to maintain the text as the primary source of chemical knowledge and practice, while at the same time integrating it with the new avenues for learning made possible by technology and the Internet. This edition incorporates links to a number of those new methodologies, including use of the Internet, computer-based classroom tools, such as Learning Catalytics™, a cloud-based active learning analytics and assessment system, and web-based tools, particularly MasteringChemistry®, which is continually evolving to provide more effective means of testing and evaluating student performance, while giving the student immediate and helpful feedback. In past versions, MasteringChemistry® provided feedback only on a question level. Now with Knewtonenhanced adaptive follow-up assignments, and Dynamic Study Modules, MasteringChemistry® continually adapts to each student, offering a personalized learning experience. As authors, we want this text to be a central, indispensable learning tool for students. Whether as a physical book or in electronic form, it can be carried everywhere and used at any time. It is the one place students can go to obtain the information outside of the classroom needed for learning, skill development, reference, and test preparation. The text, more effectively than any other instrument, provides the depth of coverage and coherent background in modern chemistry that students need to serve their professional interests and, as appropriate, to prepare for more advanced chemistry courses. If the text is to be effective in supporting your role as instructor, it must be addressed to the students. We have done our best to keep our writing clear and interesting and the book attractive and well illustrated. The book has numerous in-text study aids for students, including carefully placed descriptions of problem-solving strategies. We hope that our cumulative experiences as teachers is evident in our pacing, choice of examples, and the kinds of study aids and motivational tools we have employed. We believe students are more enthusiastic about learning chemistry when they see its importance relative to their own goals and interests; therefore, we have highlighted many important applications of chemistry in everyday life. We hope you make use of this material. It is our philosophy, as authors, that the text and all the supplementary materials provided to support its use must work in concert with you, the instructor. A textbook is only as useful to students as the instructor permits it to be. This book is replete with features that can help students learn and that can guide them as they acquire both conceptual understanding and problem- solving skills. There is a great deal here for the students to use, too much for all of it to be absorbed by any one student. You will be the guide to the best use of the book. Only with your active help will the students be able to utilize most effectively all that the text and its supplements offer. Students care about grades, of course, and with encouragement they will also become interested in the subject matter and care about learning. Please consider emphasizing features of the book that can enhance student appreciation of chemistry, such as the Chemistry Put to Work and Chemistry and Life boxes that show how chemistry impacts modern life and its relationship to health and life processes. Learn to use, and urge students to use, the rich online resources available. Emphasize conceptual understanding and place less emphasis on simple manipulative, algorithmic problem solving. What Is New in This Edition? A great many changes have been made in producing this thirteenth edition. We have continued to improve upon the art program, and new features connected with the art have been introduced. Many figures in the book have undergone modification, and dozens of new figures have been introduced A systematic effort has been made to place explanatory labels directly into figures to guide the student. New designs have been employed to more closely integrate photographic materials into figures that convey chemical principles. We have continued to explore means for more clearly and directly addressing the issue of concept learning. It is well established that conceptual misunderstandings, which impede student learning in many areas, are difficult to correct. We have looked for ways to identify and correct misconceptions via the worked examples in the book, and in the accompanying practice exercises. Among the more important changes made in the new edition, with this in mind, are: • A major new feature of this edition is the addition of a second Practice Exercise to accompany each Sample Exercise within the chapters. The majority of new Practice Exercises are of the multiple-choice variety, which enable feedback via MasteringChemistry®. The correct answers to select Practice Exercises are given in an appendix, and guidance for correcting wrong answers is provided in MasteringChemistry ®. The new Practice Exercise feature adds to the aids provided to students for mastering the concepts advanced in the text and rectifying conceptual misunderstandings. The enlarged practice exercise materials also further cement the relationship of the text to the online learning materials. At the same time, they offer a new supportive learning experience for all students, regardless of whether the MasteringChemistry® program is used. • A second major innovation in this edition is the Design An Experiment feature, which appears as a final exercise in all chapters beginning with Chapter 3, as well as in MasteringChemistry®. The Design an Experiment exercise is a departure from the usual kinds of end-of-chapter exercises in that it is inquiry based, open ended, and tries to stimulate the student to “think like a scientist.” Each exercise presents the student with a scenario in which various unknowns require investigation. The student is called upon to ponder how experiments might be set up to provide answers to particular questions about a system, and/ or test plausible hypotheses that might account for a set of observations. The aim of the Design an Experiment exercises is to foster critical thinking. We hope that they will be effective in active learning environments, which include classroom-based work and discussions, but they are also suitable for individual student work. There is no one right way to solve these exercises, but we authors offer some ideas in an online Instructor’s Resource Manual, which will include results from class testing and analysis of student responses. • The Go Figure exercises introduced in the twelfth edition proved to be a popular innovation, and we have expanded on its use. This feature poses a question that students can answer by examining the figure. These questions encourage students to actually study the figure and understand its primary message. Answers to the Go Figure questions are provided in the back of the text. • The popular Give It Some Thought (GIST) questions embedded in the text have been expanded by improvements in some of the existing questions and addition of new ones. The answers to all the GIST items are provided in the back of the text. • New end-of-chapter exercises have been added, and many of those carried over from the twelfth edition have been significantly revised. Analysis of student responses to the twelfth edition questions in MasteringChemistry® helped us identify and revise or create new questions, prompting improvements and eliminations of some questions. Additionally, analysis of usage of MasteringChemistry® has enhanced our understanding of the ways in which instructors and students have used the end-of-chapter and MasteringChemistry® materials. This, in turn, has led to additional improvements to the content within the text and in the MasteringChemistry® item library. At the end of each chapter, we list the Learning Outcomes that students should be able to perform after studying each section. End-of-chapter exercises, both in the text and in MasteringChemistry ® offer ample opportunities for students to assess mastery of learning outcomes. We trust the Learning Outcomes will help you organize your lectures and tests as the course proceeds. Organization and Contents The first five chapters give a largely macroscopic, phenomenological view of chemistry. The basic concepts introduced—such as nomenclature, stoichiometry, and thermochemistry—provide necessary background for many of the laboratory experiments usually performed in general chemistry. We believe that an early introduction to thermochemistry is desirable because so much of our understanding of chemical processes is based on considerations of energy changes. Thermochemistry is also important when we come to a discussion of bond enthalpies. We believe we have produced an effective, balanced approach to teaching thermodynamics in general chemistry, as well as providing students with an introduction to some of the global issues involving energy production and consumption. It is no easy matter to walk the narrow pathway between—on the one hand—trying to teach too much at too high a level and—on the other hand—resorting to oversimplifications. As with the book as a whole, the emphasis has been on imparting conceptual understanding, as opposed to presenting equations into which students are supposed to plug numbers. The next four chapters (Chapters 6–9) deal with electronic structure and bonding. We have largely retained our presentation of atomic orbitals. For more advanced students, Closer Look boxes in Chapters 6 and 9 highlight radial probability functions and the phases of orbitals. Our approach of placing this latter discussion in a Closer Look box in Chapter 9 enables those who wish to cover this topic to do so, while others may wish to bypass it. In treating this topic and others in Chapters 7 and 9, we have materially enhanced the accompanying figures to more effectively bring home their central messages. In Chapters 10–13, the focus of the text changes to the next level of the organization of matter: examining the states of matter. Chapters 10 and 11 deal with gases, liquids, and intermolecular forces, as in earlier editions. Chapter 12 is devoted to solids, presenting an enlarged and more contemporary view of the solid state as well as of modern materials. The chapter provides an opportunity to show how abstract chemical bonding concepts impact real-world applications. The modular organization of the chapter allows you to tailor your coverage to focus on materials (semiconductors, polymers, nanomaterials, and so forth) that are most relevant to your students and your own interests. Chapter 13 treats the formation and properties of solutions in much the same manner as the previous edition. The next several chapters examine the factors that determine the speed and extent of chemical reactions: kinetics (Chapter 14), equilibria (Chapters 15–17), thermodynamics (Chapter 19), and electrochemistry (Chapter 20). Also in this section is a chapter on environmental chemistry (Chapter 18), in which the concepts developed in preceding chapters are applied to a discussion of the atmosphere and hydrosphere. This chapter has increasingly come to be focused on green chemistry and the impacts of human activities on Earth’s water and atmosphere. After a discussion of nuclear chemistry (Chapter 21), the book ends with three survey chapters. Chapter 22 deals with nonmetals, Chapter 23 with the chemistry of transition metals, including coordination compounds, and Chapter 24 with the chemistry of organic compounds and elementary biochemical themes. These final four chapters are developed in a parallel fashion and can be covered in any order. Our chapter sequence provides a fairly standard organization, but we recognize that not everyone teaches all the topics in the order we have chosen. We have therefore made sure that instructors can make common changes in teaching sequence with no loss in student comprehension. In particular, many instructors prefer to introduce gases (Chapter 10) after stoichiometry (Chapter 3) rather than with states of matter. The chapter on gases has been written to permit this change with no disruption in the flow of material. It is also possible to treat balancing redox equations (Sections 20.1 and 20.2) earlier, after the introduction of redox reactions in Section 4.4. Finally, some instructors like to cover organic chemistry (Chapter 24) right after bonding (Chapters 8 and 9). This, too, is a largely seamless move. We have brought students into greater contact with descriptive organic and inorganic chemistry by integrating examples throughout the text. You will find pertinent and relevant examples of “real” chemistry woven into all the chapters to illustrate principles and applications. Some chapters, of course, more directly address the “descriptive” properties of elements and their compounds, especially Chapters 4, 7, 11, 18, and 22–24. We also incorporate descriptive organic and inorganic chemistry in the end-of-chapter exercises. Changes in This Edition The What is New in This Edition section on pp. xx–xxi details changes made throughout the new edition. Beyond a mere listing, however, it is worth dwelling on the general goals we set forth in formulating this new edition. Chemistry: The Central Science has traditionally been valued for its clarity of writing, its scientific accuracy and currency, its strong end-of-chapter exercises, and its consistency in level of coverage. In making changes, we have made sure not to compromise these characteristics, and we have also continued to employ an open, clean design in the layout of the book. The art program for this thirteenth edition has continued the trajectory set in the twelfth edition: to make greater and more effective use of the figures as learning tools, by drawing the reader more directly into the figure. The art itself has continued to evolve, with modifications of many figures and additions or replacements that teach more effectively. The Go Figure feature has been expanded greatly to include a larger number of figures. In the same vein, we have added to the Give it Some Thought feature, which stimulates more thoughtful reading of the text and fosters critical thinking. We provide a valuable overview of each chapter under the What’s Ahead banner. Concept links ( ) continue to provide easy-to-see cross-references to pertinent material covered earlier in the text. The essays titled Strategies in Chemistry, which provide advice to students on problem solving and “thinking like a chemist,” continue to be an important feature. For example, the new Strategies in Chemistry essay at the end of Chapter 3 introduces the new Design an Experiment feature and provides a worked out example as guidance. We have continued to emphasize conceptual exercises in the end-of-chapter exercise materials. The well-received Visualizing Concepts exercise category has been continued in this edition. These exercises are designed to facilitate concept understanding through use of models, graphs, and other visual materials. They precede the regular end-of-chapter exercises and are identified in each case with the relevant chapter section number. A generous selection of Integrative Exercises, which give students the opportunity to solve problems that integrate concepts from the present chapter with those of previous chapters, is included at the end of each chapter. The importance of integrative problem solving is highlighted by the Sample Integrative Exercise, which ends each chapter beginning with Chapter 4. In general, we have included more conceptual endof- chapter exercises and have made sure that there is a good representation of somewhat more difficult exercises to provide a better mix in terms of topic and level of difficulty. Many of the exercises have been restructured to facilitate their use in MasteringChemistry ®. We have made extensive use of the metadata from student use of MasteringChemistry® to analyze end-ofchapter exercises and make appropriate changes, as well as to develop Learning Outcomes for each chapter. New essays in our well-received Chemistry Put to Work and Chemistry and Life series emphasize world events, scientific discoveries, and medical breakthroughs that bear on topics developed in each chapter. We maintain our focus on the positive aspects of chemistry without neglecting the problems that can arise in an increasingly technological world. Our goal is to help students appreciate the real-world perspective of chemistry and the ways in which chemistry affects their lives. It is perhaps a natural tendency for chemistry textbooks to grow in length with succeeding editions, but it is one that we have resisted. There are, nonetheless, many new items in this edition, mostly ones that replace other material considered less pertinent. Here is a list of several significant changes in content: In Chapter 1, the Closer Look box on the scientific method has been rewritten. The Chemistry Put to Work box, dealing with Chemistry in the News, has been completely rewritten, with items that describe diverse ways in which chemistry intersects with the affairs of modern society. The Chapter Summary and Learning Outcomes sections at the end of the chapter have been rewritten for ease of use by both instructor and student, in this and all chapters in the text. Similarly, the exercises have been thoroughly vetted, modified where this was called for and replaced or added to, here and in all succeeding chapters. In Chapter 3, graphic elements highlighting the correct approach to problem solving have been added to Sample Exercises on calculating an empirical formula from mass percent of the elements present, combustion analysis, and calculating a theoretical yield. Chapter 5 now presents a more explicit discussion of combined units of measurement, an improved introduction to enthalpy, and more consistent use of color in art. Changes in Chapter 6 include a significant revision of the discussion of the energy levels of the hydrogen atom, including greater clarity on absorption versus emission processes. There is also a new Closer Look box on Thought Experiments and Schrödinger’s Cat, which gives students a brief glimpse of some of the philosophical issues in quantum mechanics and also connects to the 2012 Nobel Prize in Physics. In Chapter 7, the emphasis on conceptual thinking was enhanced in several ways: the section on effective nuclear charge was significantly revised to include a classroom-tested analogy, the number of Go Figure features was increased substantially, and new end-of-chapter exercises emphasize critical thinking and understanding concepts. In addition, the Chemistry Put to Work box on lithium-ion batteries was updated and revised to include discussion of current issues in using these batteries. Finally, the values of ionic radii were revised to be consistent with a recent research study of the best values for these radii. In Chapter 9, which is one of the most challenging for students, we continue to refine our presentation based on our classroom experience. Twelve new Go Figure exercises will stimulate more student thought in a chapter with a large amount of graphic material. The discussion of molecular geometry was made more conceptually oriented. The section on delocalized bonding was completely revised to provide what we believe will be a better introduction that students will find useful in organic chemistry. The Closer Look box on phases in orbitals was revamped with improved artwork. We also increased the number of end-of-chapter exercises, especially in the area of molecular orbital theory. The Design an Experiment feature in this chapter gives the students the opportunity to explore color and conjugated π systems. Chapter 10 contains a new Sample Exercise that walks the student through the calculations that are needed to understand Torricelli’s barometer. Chapter 11 includes an improved definition of hydrogen bonding and updated data for the strengths of intermolecular attractions. Chapter 12 includes the latest updates to materials chemistry, including plastic electronics. New material on the diffusion and mean free path of colloids in solution is added to Chapter 13, making a connection to the diffusion of gas molecules from Chapter 10. In Chapter 14, ten new Go Figure exercises have been added to reinforce many of the concepts presented as figures and graphs in the chapter. The Design an Experiment exercise in the chapter connects strongly to the Closer Look box on Beer’s Law, which is often the basis for spectrometric kinetics experiments performed in the general chemistry laboratory. The presentation in Chapter 16 was made more closely tied to that in Chapter 15, especially through the use of more initial/ change/equilibrium (ICE) charts. The number of conceptual end-of-chapter exercises, including Visualizing Concepts features, was increased significantly. Chapter 17 offers improved clarity on how to make buffers, and when the Henderson–Hasselbalch equation may not be accurate. Chapter 18 has been extensively updated to reflect changes in this rapidly evolving area of chemistry. Two Closer Look boxes have been added; one dealing with the shrinking level of water in the Ogallala aquifer and a second with the potential environmental consequences of hydraulic fracking. In Chapter 20, the description of Li-ion batteries has been significantly expanded to reflect the growing importance of these batteries, and a new Chemistry Put to Work box on batteries for hybrid and electric vehicles has been added. Chapter 21 was updated to reflect some of the current issues in nuclear chemistry and more commonly used nomenclature for forms of radiation are now used. Chapter 22 includes an improved discussion of silicates. In Chapter 23, the section on crystal-field theory (Section 23.6) has undergone considerable revision. The description of how the d-orbital energies of a metal ion split in a tetrahedral crystal field has been expanded to put it on par with our treatment of the octahedral geometry, and a new Sample Exercise that effectively integrates the links between color, magnetism, and the spectrochemical series has been added. Chapter 24’s coverage of organic chemistry and biochemistry now includes oxidation–reduction reactions that organic chemists find most relevant. To the Student Chemistry: The Central Science, Thirteenth Edition, has been written to introduce you to modern chemistry. As authors, we have, in effect, been engaged by your instructor to help you learn chemistry. Based on the comments of students and instructors who have used this book in its previous editions, we believe that we have done that job well. Of course, we expect the text to continue to evolve through future editions. We invite you to write to tell us what you like about the book so that we will know where we have helped you most. Also, we would like to learn of any shortcomings so that we might further improve the book in subsequent editions. Our addresses are given at the end of the Preface. Advice for Learning and Studying Chemistry Learning chemistry requires both the assimilation of many concepts and the development of analytical skills. In this text, we have provided you with numerous tools to help you succeed in both tasks. If you are going to succeed in your chemistry course, you will have to develop good study habits. Science courses, and chemistry in particular, make different demands on your learning skills than do other types of courses. We offer the following tips for success in your study of chemistry: Don’t fall behind! As the course moves along, new topics will build on material already presented. If you don’t keep up in your reading and problem solving, you will find it much harder to follow the lectures and discussions on current topics. Experienced teachers know that students who read the relevant sections of the text before coming to a class learn more from the class and retain greater recall. “Cramming” just before an exam has been shown to be an ineffective way to study any subject, chemistry included. So now you know. How important to you, in this competitive world, is a good grade in chemistry? Focus your study. The amount of information you will be expected to learn can sometimes seem overwhelming. It is essential to recognize those concepts and skills that are particularly important. Pay attention to what your instructor is emphasizing. As you work through the Sample Exercises and homework assignments, try to see what general principles and skills they employ. Use the What’s Ahead feature at the beginning of each chapter to help orient yourself to what is important in each chapter. A single reading of a chapter will simply not be enough for successful learning of chapter concepts and problem- solving skills. You will need to go over assigned materials more than once. Don’t skip the Give It Some Thought and Go Figure features, Sample Exercises, and Practice Exercises. They are your guides to whether you are learning the material. They are also good preparation for test-taking. The Learning Outcomes and Key Equations at the end of the chapter should help you focus your study. Keep good lecture notes. Your lecture notes will provide you with a clear and concise record of what your instructor regards as the most important material to learn. Using your lecture notes in conjunction with this text is the best way to determine which material to study. Skim topics in the text before they are covered in lecture. Reviewing a topic before lecture will make it easier for you to take good notes. First read the What’s Ahead points and the end-of-chapter Summary; then quickly read through the chapter, skipping Sample Exercises and supplemental sections. Paying attention to the titles of sections and subsections gives you a feeling for the scope of topics. Try to avoid thinking that you must learn and understand everything right away. You need to do a certain amount of preparation before lecture. More than ever, instructors are using the lecture period not simply as a one-way channel of communication from teacher to student. Rather, they expect students to come to class ready to work on problem solving and critical thinking. Coming to class unprepared is not a good idea for any lecture environment, but it certainly is not an option for an active learning classroom if you aim to do well in the course. After lecture, carefully read the topics covered in class. As you read, pay attention to the concepts presented and to the application of these concepts in the Sample Exercises. Once you think you understand a Sample Exercise, test your understanding by working the accompanying Practice Exercise. Learn the language of chemistry. As you study chemistry, you will encounter many new words. It is important to pay attention to these words and to know their meanings or the entities to which they refer. Knowing how to identify chemical substances from their names is an important skill; it can help you avoid painful mistakes on examinations. For example, “chlorine” and “chloride” refer to very different things. Attempt the assigned end-of-chapter exercises. Working the exercises selected by your instructor provides necessary practice in recalling and using the essential ideas of the chapter. You cannot learn merely by observing; you must be a participant. In particular, try to resist checking the Student Solutions Manual (if you have one) until you have made a sincere effort to solve the exercise yourself. If you get stuck on an exercise, however, get help from your instructor, your teaching assistant, or another student. Spending more than 20 minutes on a single exercise is rarely effective unless you know that it is particularly challenging. Learn to think like a scientist. This book is written by scientists who love chemistry. We encourage you to develop your critical thinking skills by taking advantage of new features in this edition, such as exercises that focus on conceptual learning, and the Design an Experiment exercises. Use online resources. Some things are more easily learned by discovery, and others are best shown in three dimensions. If your instructor has included MasteringChemistry® with your book, take advantage of the unique tools it provides to get the most out of your time in chemistry. The bottom line is to work hard, study effectively, and use the tools available to you, including this textbook. We want to help you learn more about the world of chemistry and why chemistry is the central science. If you really learn chemistry, you can be the life of the party, impress your friends and parents, and … well, also pass the course with a good grade The production of a textbook is a team effort requiring the involvement of many people besides the authors who contributed hard work and talent to bring this edition to life. Although their names don’t appear on the cover of the book, their creativity, time, and support have been instrumental in all stages of its development and production. Each of us has benefited greatly from discussions with colleagues and from correspondence with instructors and students both here and abroad. Colleagues have also helped immensely by reviewing our materials, sharing their insights, and providing suggestions for improvements. On this edition, we were particularly blessed with an exceptional group of accuracy checkers who read through our materials looking for both technical inaccuracies and typographical errors