Riemannian Topology and Geometric Structures on Manifolds

DOWNLOAD NOW »

Author: Krzysztof Galicki,Santiago R. Simanca

Publisher: Springer Science & Business Media

ISBN: 9780817647438

Category: Mathematics

Page: 290

View: 808

Riemannian Topology and Structures on Manifolds results from a similarly entitled conference held on the occasion of Charles P. Boyer’s 65th birthday. The various contributions to this volume discuss recent advances in the areas of positive sectional curvature, Kähler and Sasakian geometry, and their interrelation to mathematical physics, especially M and superstring theory. Focusing on these fundamental ideas, this collection presents review articles, original results, and open problems of interest.

Berkovich Spaces and Applications

DOWNLOAD NOW »

Author: Antoine Ducros,Charles Favre,Johannes Nicaise

Publisher: Springer

ISBN: 3319110292

Category: Mathematics

Page: 413

View: 9151

We present an introduction to Berkovich’s theory of non-archimedean analytic spaces that emphasizes its applications in various fields. The first part contains surveys of a foundational nature, including an introduction to Berkovich analytic spaces by M. Temkin, and to étale cohomology by A. Ducros, as well as a short note by C. Favre on the topology of some Berkovich spaces. The second part focuses on applications to geometry. A second text by A. Ducros contains a new proof of the fact that the higher direct images of a coherent sheaf under a proper map are coherent, and B. Rémy, A. Thuillier and A. Werner provide an overview of their work on the compactification of Bruhat-Tits buildings using Berkovich analytic geometry. The third and final part explores the relationship between non-archimedean geometry and dynamics. A contribution by M. Jonsson contains a thorough discussion of non-archimedean dynamical systems in dimension 1 and 2. Finally a survey by J.-P. Otal gives an account of Morgan-Shalen's theory of compactification of character varieties. This book will provide the reader with enough material on the basic concepts and constructions related to Berkovich spaces to move on to more advanced research articles on the subject. We also hope that the applications presented here will inspire the reader to discover new settings where these beautiful and intricate objects might arise.

Singularities in Geometry and Topology

Proceedings of the Trieste Singularity Summer School and Workshop, ICTP, Trieste, Italy, 15 August - 3 September 2005

DOWNLOAD NOW »

Author: Jean-Paul Brasselet

Publisher: World Scientific

ISBN: 9812700226

Category: Mathematics

Page: 902

View: 2149

Singularity theory appears in numerous branches of mathematics, as well as in many emerging areas such as robotics, control theory, imaging, and various evolving areas in physics. The purpose of this proceedings volume is to cover recent developments in singularity theory and to introduce young researchers from developing countries to singularities in geometry and topology.The contributions discuss singularities in both complex and real geometry. As such, they provide a natural continuation of the previous school on singularities held at ICTP (1991), which is recognized as having had a major influence in the field.

Zahlentheorie

Algebraische Zahlen und Funktionen

DOWNLOAD NOW »

Author: Helmut Koch

Publisher: Springer-Verlag

ISBN: 3322803120

Category: Mathematics

Page: 344

View: 2937

Hauptziel des Buches ist die Vermittlung des Grundbestandes der Algebraischen Zahlentheorie einschließlich der Theorie der normalen Erweiterungen bis hin zu einem Ausblick auf die Klassenkörpertheorie. Gleichberechtigt mit algebraischen Zahlen werden auch algebraische Funktionen behandelt. Dies geschieht einerseits um die Analogie zwischen Zahl- und Funktionenkörpern aufzuzeigen, die besonders deutlich im Falle eines endlichen Konstantenkörpers ist. Andererseits erhält man auf diese Weise eine Einführung in die Theorie der "höheren Kongruenzen" als eines wesentlichen Bestandteils der "Arithmetischen Geometrie". Obgleich das Buch hauptsächlich algebraischen Methoden gewidmet ist, findet man in der Einleitung auch einen kurzen Beweis des Primzahlsatzes nach Newman. In den Kapiteln 7 und 8 wird die Theorie der Heckeschen L-Reihen behandelt einschließlich der Verteilung der Primideale algebraischer Zahlkörper in Kegeln.

Kähler Differentials

DOWNLOAD NOW »

Author: Ernst Kunz

Publisher: Vieweg+Teubner Verlag

ISBN: 9783528089733

Category: Mathematics

Page: 402

View: 3870

This book is based on a lecture course that I gave at the University of Regensburg. The purpose of these lectures was to explain the role of Kähler differential forms in ring theory, to prepare the road for their application in algebraic geometry, and to lead up to some research problems. The text discusses almost exclusively local questions and is therefore written in the language of commutative alge bra. The translation into the language of algebraic geometry is easy for the reader who is familiar with sheaf theory and the theory of schemes. The principal goals of the monograph are: To display the information contained in the algebra of Kähler differential forms (de Rham algebra) of a commutative algebra, to int- duce and discuss "differential invariants" of algebras, and to prove theorems about algebras with "differential methods". The most important object we study is the module of Kähler differentials n~/R of an algebra SIR. Like the differentials of analysis, differential modules "linearize" problems, i.e. reduce questions about algebras (non-linear problems) to questions of linear algebra. We are mainly interested in algebras of finite type.

G-Functions and Geometry

A Publication of the Max-Planck-Institut für Mathematik, Bonn

DOWNLOAD NOW »

Author: Yves André

Publisher: Springer-Verlag

ISBN: 366314108X

Category: Mathematics

Page: 232

View: 9645

Geometrische Methoden in der Invariantentheorie

DOWNLOAD NOW »

Author: Hanspeter Kraft

Publisher: Springer-Verlag

ISBN: 3663101436

Category: Technology & Engineering

Page: 308

View: 3279

In dieser Einführung geht es vor allem um die geometrischen Aspekte der Invariantentheorie. Die hauptsächliche Motivation bildet das Studium von Klassifikations- und Normalformenproblemen, die auch historisch der Ausgangspunkt für invariantentheoretische Untersuchungen waren.

Integralgeometrie

DOWNLOAD NOW »

Author: Rolf Schneider,Wolfgang Weil

Publisher: Springer-Verlag

ISBN: 3322848248

Category: Technology & Engineering

Page: 222

View: 2908

Liebe und Mathematik

Im Herzen einer verborgenen Wirklichkeit

DOWNLOAD NOW »

Author: Edward Frenkel

Publisher: Springer-Verlag

ISBN: 3662434210

Category: Mathematics

Page: 317

View: 8396

Algebraische Transformationsgruppen und Invariantentheorie Algebraic Transformation Groups and Invariant Theory

DOWNLOAD NOW »

Author: Hanspeter Kraft,Slodowy

Publisher: Birkhäuser

ISBN: 9783764322847

Category: Mathematics

Page: 214

View: 4827

Der. vorliegende Band enthält eine Reihe von einführenden Vorlesungen, die von verschiedenen Autoren im Rahmen von zwei DMV-Seminaren zum Thema "Algebraische Transjormationsgruppen und Invariantentheorie" gehalten wur den. Entsprechend der allgemeinen Zielsetzung der DMV-Seminare sollten sowohl grundlegende Techniken und Resultate vorgestellt als auch Einblicke in aktuelle Entwickl~ngen gegeben werden. Was die Grundlagen anbetrifft, so haben wir sie hier nicht in vollem Umfang widergegeben. Im Bedarfsfall mag der Leser unsere Bücher "Geometrische Methoden in der Invariantentheorie"l und "Invariant Theory"2 zu Rate ziehen, auf die sich die einführenden Vorträge stützten. Leider konnten auch nicht alle aktuellen Entwicklungen berücksichtigt werden, über die im Seminar berichtet wurde. Die Ziele der hier vorliegenden Beiträge, auf deren Inhalt wir in der Einführung ausführlicher eingehen werden, sind entsprechend unterschiedlicher Natur. Einige liefern Darstellungen bereits publizierter Theorien, wobei sie allerdings ein größeres Gewicht auf Motivation und die Ausführung von Beispie len legen, als dies in den Originalarbeiten möglich war. Andere leiten grundle gende Resultate auf neue "reise her oder stellen sie aus anderer Sicht dar. Schließlich werden auch noch einzelne Einblicke in aktuelle Forschungsrichtun gen gegeben. Wir hoffen, daß durch diesen Band zahlreiche Resultate der Theorie der algebraischen Transformationsgruppen leichter zugänglich geworden sind, und daß der Leser mit ihm eine nützliche Basis für die Lektüre aktueller Forschungsarbeiten erhält.

Die großen Fragen - Mathematik

DOWNLOAD NOW »

Author: Tony Crilly

Publisher: Springer-Verlag

ISBN: 3827429188

Category: Mathematics

Page: 203

View: 650

Die großen Fragen behandeln grundlegende Probleme und Konzepte in Wissenschaft und Philosophie, die Forscher und Denker seit jeher umtreiben. Anspruch der ambitionierten Reihe ist es, die Antworten auf diese Fragen zu präsentieren und damit die wichtigsten Gedanken der Menschheit in einzigartigen Übersichten zu bündeln. Im vorliegenden Band Mathematik, der einen Bogen spannt vom Beginn des Zählens und den idealen Platonischen Körpern bis zur Chaostheorie und dem Fermat’schen Theorem, setzt sich Tony Crilly mit jenen 20 Fragen auseinander, die das Herz der Mathematik und unseres Verständnisses der Welt bilden.

Bernhard Riemann 1826–1866

Wendepunkte in der Auffassung der Mathematik

DOWNLOAD NOW »

Author: Detlef Laugwitz

Publisher: Springer-Verlag

ISBN: 3034889836

Category: Mathematics

Page: 348

View: 6947

Das Riemannsche Integral lernen schon die Schüler kennen, die Theorien der reellen und der komplexen Funktionen bauen auf wichtigen Begriffsbildungen und Sätzen Riemanns auf, die Riemannsche Geometrie ist für Einsteins Gravitationstheorie und ihre Erweiterungen unentbehrlich, und in der Zahlentheorie ist die berühmte Riemannsche Vermutung noch immer offen. Riemann und sein um fünf Jahre jüngerer Freund Richard Dedekind sahen sich als Schüler von Gauss und Dirichlet. Um die Mitte des 19. Jahrhunderts leiteten sie den Übergang zur "modernen Mathematik" ein, der eine in Analysis und Geometrie, der andere in der Algebra mit der Hinwendung zu Mengen und Strukturen. Dieses Buch ist der erste Versuch, Riemanns wissenschaftliches Werk unter einem einheitlichen Gesichtspunkt zusammenzufassend darzustellen. Riemann gilt als einer der Philosophen unter den Mathematikern. Er stellte das Denken in Begriffen neben die zuvor vorherrschende algorithmische Auffassung von der Mathematik, welche die Gegenstände der Untersuchung, in Formeln und Figuren, in Termumformungen und regelhaften Konstruktionen als die allein legitimen Methoden sah. David Hilbert hat als Riemanns Grundsatz herausgestellt, die Beweise nicht durch Rechnung, sondern lediglich durch Gedanken zu zwingen. Hermann Weyl sah als das Prinzip Riemanns in Mathematik und Physik, "die Welt als das erkenntnistheoretische Motiv..., die Welt aus ihrem Verhalten im un- endlich kleinen zu verstehen."

Lehr- und Wanderjahre eines Mathematikers

Aus dem Französischen von Theresia Übelhör

DOWNLOAD NOW »

Author: André Weil

Publisher: Springer-Verlag

ISBN: 3034850476

Category: Science

Page: 212

View: 1194

Mein Leben, oder zumindest das, was diesen Namen verdient -ein außer gewöhnlich glückliches Leben mit einigen Schicksalsschlägen -erstreckte sich auf die Zeit zwischen dem 6. Mai 1906, dem Tag meiner Geburt, und dem 24. Mai 1986, dem Todestag meiner Frau und Gefährtin Eveline. Wenn auf diesen Seiten, die ihr gewidmet sind, von meiner Frau recht wenig die Rede sein wird, heißt das nicht, daß sie in meinem Leben und in meinen Gedanken einen geringen Platz eingenommen hätte. Sie war im Gegenteil, beinahe vom Tag unserer ersten Begegnung an, so eng damit verwoben, daß von mir oder von ihr zu sprechen ein und dasselbe ist. Ihre Anwesenheit beziehungsweise ihre Abwesenheit bestimmte die Textur meines ganzen Lebens. Was könnte ich anderes dazu sagen, als daß unsere Ehe eine von jenen war, die La Rochefoucauld Lügen strafen? »Fulsere vere candidi mihi soles . . . . « Ebenso wird meine Schwester kaum erwähnt werden. Es ist schon lange her, daß ich meine Erinnerungen an sie Simone Petrement mitgeteilt habe, die sie in ihre gute Biographie La vie de Simone Weil einfließen ließ, wo man viele Einzelheiten über unsere gemeinsame Kindheit erfahren kann, und es wäre unnötig, dies hier zu wiederholen. Als Kinder waren wir unzertrennlich, aber ich war der große Bruder und sie die kleine Schwester. Später waren wir selten zusammen, und meist sprachen wir in scherzhaftem Ton miteinander, denn sie hatte ein fröhliches und humorvolles Naturell, wie alle, die sie kannten, bestätigt haben.