Basic Homological Algebra

DOWNLOAD NOW »

Author: M. Scott Osborne

Publisher: Springer Science & Business Media

ISBN: 1461212782

Category: Mathematics

Page: 398

View: 6885

From the reviews: "The book is well written. We find here many examples. Each chapter is followed by exercises, and at the end of the book there are outline solutions to some of them. [...] I especially appreciated the lively style of the book; [...] one is quickly able to find necessary details." EMS Newsletter

Basic Homological Algebra

DOWNLOAD NOW »

Author: M. Scott Osborne

Publisher: Springer

ISBN: 9780387989341

Category: Mathematics

Page: 398

View: 4486

From the reviews: "The book is well written. We find here many examples. Each chapter is followed by exercises, and at the end of the book there are outline solutions to some of them. [...] I especially appreciated the lively style of the book; [...] one is quickly able to find necessary details." EMS Newsletter

A Course in Homological Algebra

DOWNLOAD NOW »

Author: P.J. Hilton,Urs Stammbach

Publisher: Springer Science & Business Media

ISBN: 146849936X

Category: Mathematics

Page: 340

View: 3681

In this chapter we are largely influenced in our choice of material by the demands of the rest of the book. However, we take the view that this is an opportunity for the student to grasp basic categorical notions which permeate so much of mathematics today, including, of course, algebraic topology, so that we do not allow ourselves to be rigidly restricted by our immediate objectives. A reader totally unfamiliar with category theory may find it easiest to restrict his first reading of Chapter II to Sections 1 to 6; large parts of the book are understandable with the material presented in these sections. Another reader, who had already met many examples of categorical formulations and concepts might, in fact, prefer to look at Chapter II before reading Chapter I. Of course the reader thoroughly familiar with category theory could, in principal, omit Chapter II, except perhaps to familiarize himself with the notations employed. In Chapter III we begin the proper study of homological algebra by looking in particular at the group ExtA(A, B), where A and Bare A-modules. It is shown how this group can be calculated by means of a projective presentation of A, or an injective presentation of B; and how it may also be identified with the group of equivalence classes of extensions of the quotient module A by the submodule B.

An Elementary Approach to Homological Algebra

DOWNLOAD NOW »

Author: L.R. Vermani

Publisher: CRC Press

ISBN: 0203484088

Category: Mathematics

Page: 328

View: 2647

Homological algebra was developed as an area of study almost 50 years ago, and many books on the subject exist. However, few, if any, of these books are written at a level appropriate for students approaching the subject for the first time. An Elementary Approach to Homological Algebra fills that void. Designed to meet the needs of beginning graduate students, it presents the material in a clear, easy-to-understand manner. Complete, detailed proofs make the material easy to follow, numerous worked examples help readers understand the concepts, and an abundance of exercises test and solidify their understanding. Often perceived as dry and abstract, homological algebra nonetheless has important applications in many important areas. The author highlights some of these, particularly several related to group theoretic problems, in the concluding chapter. Beyond making classical homological algebra accessible to students, the author's level of detail, while not exhaustive, also makes the book useful for self-study and as a reference for researchers.

Methods of Homological Algebra

DOWNLOAD NOW »

Author: Sergei I. Gelfand,Yuri J. Manin

Publisher: Springer Science & Business Media

ISBN: 3662032201

Category: Mathematics

Page: 374

View: 4481

Homological algebra first arose as a language for describing topological prospects of geometrical objects. As with every successful language it quickly expanded its coverage and semantics, and its contemporary applications are many and diverse. This modern approach to homological algebra, by two leading writers in the field, is based on the systematic use of the language and ideas of derived categories and derived functors. Relations with standard cohomology theory (sheaf cohomology, spectral sequences, etc.) are described. In most cases complete proofs are given. Basic concepts and results of homotopical algebra are also presented. The book addresses people who want to learn about a modern approach to homological algebra and to use it in their work.

An Introduction to Homological Algebra

DOWNLOAD NOW »

Author: Charles A. Weibel

Publisher: Cambridge University Press

ISBN: 113964307X

Category: Mathematics

Page: N.A

View: 2469

The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.

Basic Abstract Algebra

For Graduate Students and Advanced Undergraduates

DOWNLOAD NOW »

Author: Robert B. Ash

Publisher: Courier Corporation

ISBN: 0486318117

Category: Mathematics

Page: 432

View: 9135

Relations between groups and sets, results and methods of abstract algebra in terms of number theory and geometry, and noncommutative and homological algebra. Solutions. 2006 edition.

An Introduction to Homological Algebra

DOWNLOAD NOW »

Author: Joseph J. Rotman

Publisher: Springer Science & Business Media

ISBN: 0387683240

Category: Mathematics

Page: 710

View: 2492

Graduate mathematics students will find this book an easy-to-follow, step-by-step guide to the subject. Rotman’s book gives a treatment of homological algebra which approaches the subject in terms of its origins in algebraic topology. In this new edition the book has been updated and revised throughout and new material on sheaves and cup products has been added. The author has also included material about homotopical algebra, alias K-theory. Learning homological algebra is a two-stage affair. First, one must learn the language of Ext and Tor. Second, one must be able to compute these things with spectral sequences. Here is a work that combines the two.

Lecture Notes in Algebraic Topology

DOWNLOAD NOW »

Author: James Frederic Davis,Paul Kirk

Publisher: American Mathematical Soc.

ISBN: 0821821601

Category: Mathematics

Page: 367

View: 8321

The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the ``big picture'', teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.

Representation Theory

A Homological Algebra Point of View

DOWNLOAD NOW »

Author: Alexander Zimmermann

Publisher: Springer

ISBN: 3319079689

Category: Mathematics

Page: 707

View: 3682

Introducing the representation theory of groups and finite dimensional algebras, first studying basic non-commutative ring theory, this book covers the necessary background on elementary homological algebra and representations of groups up to block theory. It further discusses vertices, defect groups, Green and Brauer correspondences and Clifford theory. Whenever possible the statements are presented in a general setting for more general algebras, such as symmetric finite dimensional algebras over a field. Then, abelian and derived categories are introduced in detail and are used to explain stable module categories, as well as derived categories and their main invariants and links between them. Group theoretical applications of these theories are given – such as the structure of blocks of cyclic defect groups – whenever appropriate. Overall, many methods from the representation theory of algebras are introduced. Representation Theory assumes only the most basic knowledge of linear algebra, groups, rings and fields and guides the reader in the use of categorical equivalences in the representation theory of groups and algebras. As the book is based on lectures, it will be accessible to any graduate student in algebra and can be used for self-study as well as for classroom use.

Relative Homological Algebra

DOWNLOAD NOW »

Author: Edgar E. Enochs

Publisher: Walter de Gruyter

ISBN: 3110215217

Category: Mathematics

Page: 372

View: 8724

This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. The book is also suitable for an introductory course in commutative and ordinary homological algebra.

Homological Algebra

In Strongly Non-Abelian Settings

DOWNLOAD NOW »

Author: Marco Grandis

Publisher: World Scientific

ISBN: 9814425931

Category: Mathematics

Page: 356

View: 6732

We propose here a study of ‘semiexact’ and ‘homological' categories as a basis for a generalised homological algebra. Our aim is to extend the homological notions to deeply non-abelian situations, where satellites and spectral sequences can still be studied. This is a sequel of a book on ‘Homological Algebra, The interplay of homology with distributive lattices and orthodox semigroups’, published by the same Editor, but can be read independently of the latter. The previous book develops homological algebra in p-exact categories, i.e. exact categories in the sense of Puppe and Mitchell — a moderate generalisation of abelian categories that is nevertheless crucial for a theory of ‘coherence’ and ‘universal models’ of (even abelian) homological algebra. The main motivation of the present, much wider extension is that the exact sequences or spectral sequences produced by unstable homotopy theory cannot be dealt with in the previous framework. According to the present definitions, a semiexact category is a category equipped with an ideal of ‘null’ morphisms and provided with kernels and cokernels with respect to this ideal. A homological category satisfies some further conditions that allow the construction of subquotients and induced morphisms, in particular the homology of a chain complex or the spectral sequence of an exact couple. Extending abelian categories, and also the p-exact ones, these notions include the usual domains of homology and homotopy theories, e.g. the category of ‘pairs’ of topological spaces or groups; they also include their codomains, since the sequences of homotopy ‘objects’ for a pair of pointed spaces or a fibration can be viewed as exact sequences in a homological category, whose objects are actions of groups on pointed sets. Homological Algebra: The Interplay of Homology with Distributive Lattices and Orthodox Semigroups Contents:IntroductionSemiexact categoriesHomological CategoriesSubquotients, Homology and Exact CouplesSatellitesUniversal ConstructionsApplications to Algebraic TopologyHomological Theories and Biuniversal ModelsAppendix A. Some Points of Category Theory Readership: Graduate students, professors and researchers in pure mathematics, in particular category theory and algebraic topology. Keywords:Non Abelian Homological Algebra;Spectral Sequences;Distributive Lattices;Orthodox Semigroups;Categories of RelationsReviews: “The range of applications and examples is considerable and many are outside the reach of more standard forms of homological algebra, but the methods used here also give insight as to 'why' the classical theory works and how its results can be interpreted.” Zentralblatt MATH

Homological Algebra

DOWNLOAD NOW »

Author: S.I. Gelfand,Yu.I. Manin

Publisher: Springer Science & Business Media

ISBN: 3642579116

Category: Mathematics

Page: 222

View: 4573

This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.

Algebra

Chapter 0

DOWNLOAD NOW »

Author: Paolo Aluffi

Publisher: American Mathematical Soc.

ISBN: 0821847813

Category: Algebra

Page: 713

View: 3427

Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.

Introduction to Abelian Model Structures and Gorenstein Homological Dimensions

DOWNLOAD NOW »

Author: Marco A. P. Bullones

Publisher: CRC Press

ISBN: 149872535X

Category: Mathematics

Page: 344

View: 8208

Introduction to Abelian Model Structures and Gorenstein Homological Dimensions provides a starting point to study the relationship between homological and homotopical algebra, a very active branch of mathematics. The book shows how to obtain new model structures in homological algebra by constructing a pair of compatible complete cotorsion pairs related to a specific homological dimension and then applying the Hovey Correspondence to generate an abelian model structure. The first part of the book introduces the definitions and notations of the universal constructions most often used in category theory. The next part presents a proof of the Eklof and Trlifaj theorem in Grothedieck categories and covers M. Hovey’s work that connects the theories of cotorsion pairs and model categories. The final two parts study the relationship between model structures and classical and Gorenstein homological dimensions and explore special types of Grothendieck categories known as Gorenstein categories. As self-contained as possible, this book presents new results in relative homological algebra and model category theory. The author also re-proves some established results using different arguments or from a pedagogical point of view. In addition, he proves folklore results that are difficult to locate in the literature.

Lectures on Functor Homology

DOWNLOAD NOW »

Author: Vincent Franjou,Antoine Touzé

Publisher: Birkhäuser

ISBN: 3319213059

Category: Mathematics

Page: 149

View: 4241

This book features a series of lectures that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods for tackling difficult mathematical problems. In the lectures by Aurélien Djament, polynomial functors appear as coefficients in the homology of infinite families of classical groups, e.g. general linear groups or symplectic groups, and their stabilization. Djament’s theorem states that this stable homology can be computed using only the homology with trivial coefficients and the manageable functor homology. The series includes an intriguing development of Scorichenko’s unpublished results. The lectures by Wilberd van der Kallen lead to the solution of the general cohomological finite generation problem, extending Hilbert’s fourteenth problem and its solution to the context of cohomology. The focus here is on the cohomology of algebraic groups, or rational cohomology, and the coefficients are Friedlander and Suslin’s strict polynomial functors, a conceptual form of modules over the Schur algebra. Roman Mikhailov’s lectures highlight topological invariants: homoto py and homology of topological spaces, through derived functors of polynomial functors. In this regard the functor framework makes better use of naturality, allowing it to reach calculations that remain beyond the grasp of classical algebraic topology. Lastly, Antoine Touzé’s introductory course on homological algebra makes the book accessible to graduate students new to the field. The links between functor homology and the three fields mentioned above offer compelling arguments for pushing the development of the functor viewpoint. The lectures in this book will provide readers with a feel for functors, and a valuable new perspective to apply to their favourite problems.

Abelian Groups, Rings, Modules, and Homological Algebra

DOWNLOAD NOW »

Author: Pat Goeters,Overtoun M.G. Jenda

Publisher: CRC Press

ISBN: 9781420010763

Category: Mathematics

Page: 360

View: 4661

About the book... In honor of Edgar Enochs and his venerable contributions to a broad range of topics in Algebra, top researchers from around the world gathered at Auburn University to report on their latest work and exchange ideas on some of today's foremost research topics. This carefully edited volume presents the refereed papers of the participants of these talks along with contributions from other veteran researchers who were unable to attend. These papers reflect many of the current topics in Abelian Groups, Commutative Algebra, Commutative Rings, Group Theory, Homological Algebra, Lie Algebras, and Module Theory. Accessible even to beginning mathematicians, many of these articles suggest problems and programs for future study. This volume is an outstanding addition to the literature and a valuable handbook for beginning as well as seasoned researchers in Algebra. about the editors... H. PAT GOETERS completed his undergraduate studies in mathematics and computer science at Southern Connecticut State University and received his Ph.D. in 1984 from the University of Connecticut under the supervision of William J. Wickless. After spending one year in a post-doctoral position in Wesleyan University under the tutelage of James D. Reid, Goeters was invited for a tenure track position in Auburn University by Ulrich F. Albrecht. Soon afterwards, William Ullery and Overtoun Jenda were hired, and so began a lively Algebra group. OVERTOUN M. G. JENDA received his bachelor's degree in Mathematics from Chancellor College, the University of Malawi. He moved to the U.S. 1977 to pursue graduate studies at University of Kentucky, earning his Ph.D. in 1981 under the supervision of Professor Edgar Enochs. He then returned to Chancellor College, where he was a lecturer (assistant professor) for three years. He moved to the University of Botswana for another three-year stint as a lecturer before moving back to the University of Kentucky as a visiting assistant professor in 1987. In 1988, he joined the Algebra research group at Auburn University.

Homological Algebra

In Strongly Non-Abelian Settings

DOWNLOAD NOW »

Author: Marco Grandis

Publisher: World Scientific

ISBN: 9814425931

Category: Mathematics

Page: 356

View: 6914

We propose here a study of ‘semiexact’ and ‘homological' categories as a basis for a generalised homological algebra. Our aim is to extend the homological notions to deeply non-abelian situations, where satellites and spectral sequences can still be studied. This is a sequel of a book on ‘Homological Algebra, The interplay of homology with distributive lattices and orthodox semigroups’, published by the same Editor, but can be read independently of the latter. The previous book develops homological algebra in p-exact categories, i.e. exact categories in the sense of Puppe and Mitchell — a moderate generalisation of abelian categories that is nevertheless crucial for a theory of ‘coherence’ and ‘universal models’ of (even abelian) homological algebra. The main motivation of the present, much wider extension is that the exact sequences or spectral sequences produced by unstable homotopy theory cannot be dealt with in the previous framework. According to the present definitions, a semiexact category is a category equipped with an ideal of ‘null’ morphisms and provided with kernels and cokernels with respect to this ideal. A homological category satisfies some further conditions that allow the construction of subquotients and induced morphisms, in particular the homology of a chain complex or the spectral sequence of an exact couple. Extending abelian categories, and also the p-exact ones, these notions include the usual domains of homology and homotopy theories, e.g. the category of ‘pairs’ of topological spaces or groups; they also include their codomains, since the sequences of homotopy ‘objects’ for a pair of pointed spaces or a fibration can be viewed as exact sequences in a homological category, whose objects are actions of groups on pointed sets. Homological Algebra: The Interplay of Homology with Distributive Lattices and Orthodox Semigroups Contents:IntroductionSemiexact categoriesHomological CategoriesSubquotients, Homology and Exact CouplesSatellitesUniversal ConstructionsApplications to Algebraic TopologyHomological Theories and Biuniversal ModelsAppendix A. Some Points of Category Theory Readership: Graduate students, professors and researchers in pure mathematics, in particular category theory and algebraic topology. Keywords:Non Abelian Homological Algebra;Spectral Sequences;Distributive Lattices;Orthodox Semigroups;Categories of RelationsReviews: “The range of applications and examples is considerable and many are outside the reach of more standard forms of homological algebra, but the methods used here also give insight as to 'why' the classical theory works and how its results can be interpreted.” Zentralblatt MATH

Rings and Homology

DOWNLOAD NOW »

Author: James P. Jans

Publisher: Courier Dover Publications

ISBN: 0486801896

Category: Mathematics

Page: 96

View: 810

This concise text is geared toward students of mathematics who have completed a basic college course in algebra. Combining material on ring structure and homological algebra, the treatment offers advanced undergraduate and graduate students practice in the techniques of both areas. After a brief review of basic concepts, the text proceeds to an examination of ring structure, with particular attention to the structure of semisimple rings with minimum condition. Subsequent chapters develop certain elementary homological theories, introducing the functor Ext and exploring the various projective dimensions, global dimension, and duality theory. Each chapter concludes with a set of exercises.

Rational Homotopy Theory

DOWNLOAD NOW »

Author: Yves Felix,Stephen Halperin,J.-C. Thomas

Publisher: Springer Science & Business Media

ISBN: 146130105X

Category: Mathematics

Page: 539

View: 9048

Rational homotopy theory is a subfield of algebraic topology. Written by three authorities in the field, this book contains all the main theorems of the field with complete proofs. As both notation and techniques of rational homotopy theory have been considerably simplified, the book presents modern elementary proofs for many results that were proven ten or fifteen years ago.