Asymptotic Analysis

Author: J.D. Murray

Publisher: Springer Science & Business Media

ISBN: 1461211220

Category: Mathematics

Page: 165

View: 568

From the reviews: "A good introduction to a subject important for its capacity to circumvent theoretical and practical obstacles, and therefore particularly prized in the applications of mathematics. The book presents a balanced view of the methods and their usefulness: integrals on the real line and in the complex plane which arise in different contexts, and solutions of differential equations not expressible as integrals. Murray includes both historical remarks and references to sources or other more complete treatments. More useful as a guide for self-study than as a reference work, it is accessible to any upperclass mathematics undergraduate. Some exercises and a short bibliography included. Even with E.T. Copson's Asymptotic Expansions or N.G. de Bruijn's Asymptotic Methods in Analysis (1958), any academic library would do well to have this excellent introduction." (S. Puckette, University of the South) #Choice Sept. 1984#1

Asymptotic Analysis

Linear Ordinary Differential Equations

Author: Mikhail V. Fedoryuk

Publisher: Springer Science & Business Media

ISBN: 3642580165

Category: Mathematics

Page: 363

View: 3060

In this book we present the main results on the asymptotic theory of ordinary linear differential equations and systems where there is a small parameter in the higher derivatives. We are concerned with the behaviour of solutions with respect to the parameter and for large values of the independent variable. The literature on this question is considerable and widely dispersed, but the methods of proofs are sufficiently similar for this material to be put together as a reference book. We have restricted ourselves to homogeneous equations. The asymptotic behaviour of an inhomogeneous equation can be obtained from the asymptotic behaviour of the corresponding fundamental system of solutions by applying methods for deriving asymptotic bounds on the relevant integrals. We systematically use the concept of an asymptotic expansion, details of which can if necessary be found in [Wasow 2, Olver 6]. By the "formal asymptotic solution" (F.A.S.) is understood a function which satisfies the equation to some degree of accuracy. Although this concept is not precisely defined, its meaning is always clear from the context. We also note that the term "Stokes line" used in the book is equivalent to the term "anti-Stokes line" employed in the physics literature.

Asymptotic Analysis for Periodic Structures

Author: Alain Bensoussan,Jacques-Louis Lions,George Papanicolaou

Publisher: American Mathematical Soc.

ISBN: 0821853244

Category: Mathematics

Page: 392

View: 2616

This is a reprinting of a book originally published in 1978. At that time it was the first book on the subject of homogenization, which is the asymptotic analysis of partial differential equations with rapidly oscillating coefficients, and as such it sets the stage for what problems to consider and what methods to use, including probabilistic methods. At the time the book was written the use of asymptotic expansions with multiple scales was new, especially their use as a theoretical tool, combined with energy methods and the construction of test functions for analysis with weak convergence methods. Before this book, multiple scale methods were primarily used for non-linear oscillation problems in the applied mathematics community, not for analyzing spatial oscillations as in homogenization. In the current printing a number of minor corrections have been made, and the bibliography was significantly expanded to include some of the most important recent references. This book gives systematic introduction of multiple scale methods for partial differential equations, including their original use for rigorous mathematical analysis in elliptic, parabolic, and hyperbolic problems, and with the use of probabilistic methods when appropriate. The book continues to be interesting and useful to readers of different backgrounds, both from pure and applied mathematics, because of its informal style of introducing the multiple scale methodology and the detailed proofs.

Asymptotic Analysis of Singular Perturbations

Author: W. Eckhaus

Publisher: Elsevier

ISBN: 9780080875309

Category: Mathematics

Page: 286

View: 7148

Asymptotic Analysis of Singular Perturbations

Asymptotic Analysis

A Distributional Approach

Author: Ricardo Estrada,Ram P. Kanwal

Publisher: Springer Science & Business Media

ISBN: 1468400290

Category: Mathematics

Page: 258

View: 5469

Asymptotic analysis is an old subject that has found applications in vari ous fields of pure and applied mathematics, physics and engineering. For instance, asymptotic techniques are used to approximate very complicated integral expressions that result from transform analysis. Similarly, the so lutions of differential equations can often be computed with great accuracy by taking the sum of a few terms of the divergent series obtained by the asymptotic calculus. In view of the importance of these methods, many excellent books on this subject are available [19], [21], [27], [67], [90], [91], [102], [113]. An important feature of the theory of asymptotic expansions is that experience and intuition play an important part in it because particular problems are rather individual in nature. Our aim is to present a sys tematic and simplified approach to this theory by the use of distributions (generalized functions). The theory of distributions is another important area of applied mathematics, that has also found many applications in mathematics, physics and engineering. It is only recently, however, that the close ties between asymptotic analysis and the theory of distributions have been studied in detail [15], [43], [44], [84], [92], [112]. As it turns out, generalized functions provide a very appropriate framework for asymptotic analysis, where many analytical operations can be performed, and also pro vide a systematic procedure to assign values to the divergent integrals that often appear in the literature.

Asymptotic Analysis

From Theory to Application

Author: F. Verhulst

Publisher: Springer

ISBN: 3540353321

Category: Mathematics

Page: 248

View: 4805

Asymptotic Analysis of Differential Equations

Author: R. B. White

Publisher: World Scientific

ISBN: 1848166079

Category: Mathematics

Page: 405

View: 8283

"This is a useful volume in which a wide selection of asymptotic techniques is clearly presented in a form suitable for both applied mathematicians and Physicists who require an introduction to asymptotic techniques." --Book Jacket.

Plates, Laminates, and Shells

Asymptotic Analysis and Homogenization

Author: T. Lewi?ski,J¢zef Joachim Telega

Publisher: World Scientific

ISBN: 9789810232061

Category: Mathematics

Page: 739

View: 3881

This book gives a systematic and comprehensive presentation of the results concerning effective behavior of elastic and plastic plates with periodic or quasiperiodic structure. One of the chapters covers the hitherto available results concerning the averaging problems in the linear and nonlinear shell models.A unified approach to the problems studied is based on modern variational and asymptotic methods, including the methods of variational inequalities as well as homogenization techniques. Duality arguments are also exploited. A significant part of the book deals with problems important for engineering practice, such as: statical analysis of highly nonhomogeneous plates and shells for which common discretization techniques fail to be efficient, assessing stiffness reduction of cracked 0n/900m]s laminates, and assessing ultimate loads for perfectly plastic plates and shells composed of repeated segments. When possible, the homogenization formulas are cast in closed form expressions. The formulas presented in this manner are then used in constructing regularized formulations of the fundamental optimization problems for plates and shells, since the regularization concepts are based on introducing the composite regions for which microstructural properties play the role of new design variables.

Applied Asymptotic Analysis

Author: Peter David Miller

Publisher: American Mathematical Soc.

ISBN: 0821840789

Category: Mathematics

Page: 467

View: 666

"The book is intended for a beginning graduate course on asymptotic analysis in applied mathematics and is aimed at students of pure and applied mathematics as well as science and engineering. The basic prerequisite is a background in differential equations, linear algebra, advanced calculus, and complex variables at the level of introductory undergraduate courses on these subjects."--BOOK JACKET.

Asymptotic Analysis of Fields in Multi-structures

Author: Vladimir Kozlov,V. G. Mazʹi͡a,Alexander B. Movchan

Publisher: Oxford University Press

ISBN: 9780198514954

Category: Mathematics

Page: 282

View: 6596

The asymptotic analysis of boundary value problems in parameter-dependent domains is a rapidly developing field of research in the theory of partial differential equations, with important applications in electrostatics, elasticity, hydrodynamics and fracture mechanics. Building on the work of Ciarlet and Destuynder, this book provides a systematic coverage of these methods in multi-structures, i.e. domains which are dependent on a small parameter e in such a way that the limit region consists of subsets of different space dimensions. An undergraduate knowledge of partial differential equations and functional analysis is assumed.

Capacity and Transport in Contrast Composite Structures

Asymptotic Analysis and Applications

Author: A. A. Kolpakov,A. G. Kolpakov

Publisher: CRC Press

ISBN: 9781439801765

Category: Mathematics

Page: 335

View: 3280

Is it possible to apply a network model to composites with conical inclusions? How does the energy pass through contrast composites? Devoted to the analysis of transport problems for systems of densely packed, high-contrast composite materials, Capacity and Transport in Contrast Composite Structures: Asymptotic Analysis and Applications answers questions such as these and presents new and modified asymptotic methods for real-world applications in composite materials development. A mathematical discussion of phenomena related to natural sciences and engineering, this book covers historical developments and new progress in mathematical calculations, computer techniques, finite element computer programs, and presentation of results of numerical computations. The "transport problem"—which is described with scalar linear elliptic equations—implies problems of thermoconductivity, diffusion, and electrostatics. To address this "problem," the authors cover asymptotic analysis of partial differential equations, material science, and the analysis of effective properties of electroceramics. Providing numerical calculations of modern composite materials that take into account nonlinear effects, the book also: Presents results of numerical analysis, demonstrating specific properties of distributions of local fields in high-contrast composite structures and systems of closely placed bodies Assesses whether total flux, energy, and capacity exhaust characteristics of the original continuum model Illustrates the expansion of the method for systems of bodies to highly filled contrast composites This text addresses the problem of loss of high-contrast composites, as well as transport and elastic properties of thin layers that cover or join solid bodies. The material presented will be particularly useful for applied mathematicians interested in new methods, and engineers dealing with prospective materials and design methods.

Techniques of Asymptotic Analysis

Author: Lawrence Sirovich

Publisher: Springer Science & Business Media

ISBN: 1461264022

Category: Mathematics

Page: 306

View: 6653

These notes originate from a one semester course which forms part of the "Math Methods" cycle at Brown. In the hope that these notes might prove useful for reference purposes several additional sections have been included and also a table of contents and index. Although asymptotic analysis is now enjoying a period of great vitality, these notes do not reflect a research oriented course. The course is aimed toward people in applied mathematics, physics, engineering, etc., who have a need for asymptotic analysis in their work. The choice of subjects has been largely dictated by the likelihood of application. Also abstraction and generality have not been pursued. Technique and computation are given equal prominence with theory. Both rigorous and formal theory is presented --very often in tandem. In practice, the means for a rigorous analysis are not always available. For this reason a goal has been the cultivation of mature formal reasoning. Therefore, during the course of lectures formal presentations gradually eclipse rigorous presentations. When this occurs, rigorous proofs are given as exercises or in the case of lengthy proofs, reference is made to the Reading List at the end.

Asymptotic Analysis of Random Walks

Heavy-Tailed Distributions

Author: A. A. Borovkov,K. A. Borovkov

Publisher: Cambridge University Press

ISBN: N.A

Category: Mathematics

Page: 625

View: 7059

A comprehensive monograph presenting a unified systematic exposition of the large deviations theory for heavy-tailed random walks.

Asymptotic Analysis and the Numerical Solution of Partial Differential Equations

Author: Hans G. Kaper,Marc Garbey

Publisher: CRC Press

ISBN: 9780585319674

Category: Mathematics

Page: 286

View: 3877

Integrates two fields generally held to be incompatible, if not downright antithetical, in 16 lectures from a February 1990 workshop at the Argonne National Laboratory, Illinois. The topics, of interest to industrial and applied mathematicians, analysts, and computer scientists, include singular per

Asymptotic Analysis and Boundary Layers

Author: Jean Cousteix,Jacques Mauss

Publisher: Springer Science & Business Media

ISBN: 3540464891

Category: Science

Page: 434

View: 588

This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows.

Nonstandard Asymptotic Analysis

Author: Imme van den Berg

Publisher: Springer

ISBN: 3540478108

Category: Mathematics

Page: 192

View: 2524

This research monograph considers the subject of asymptotics from a nonstandard view point. It is intended both for classical asymptoticists - they will discover a new approach to problems very familiar to them - and for nonstandard analysts but includes topics of general interest, like the remarkable behaviour of Taylor polynomials of elementary functions. Noting that within nonstandard analysis, "small", "large", and "domain of validity of asymptotic behaviour" have a precise meaning, a nonstandard alternative to classical asymptotics is developed. Special emphasis is given to applications in numerical approximation by convergent and divergent expansions: in the latter case a clear asymptotic answer is given to the problem of optimal approximation, which is valid for a large class of functions including many special functions. The author's approach is didactical. The book opens with a large introductory chapter which can be read without much knowledge of nonstandard analysis. Here the main features of the theory are presented via concrete examples, with many numerical and graphic illustrations. N

Non-spectral Asymptotic Analysis of One-Parameter Operator Semigroups

Author: Eduard Yu. Emel'yanov

Publisher: Springer Science & Business Media

ISBN: 3764381140

Category: Mathematics

Page: 174

View: 4512

In this book, non-spectral methods are presented and discussed that have been developed over the last two decades for the investigation of asymptotic behavior of operator semigroups. This concerns in particular Markov semigroups in L1-spaces, motivated by applications to probability theory and dynamical systems. Related results, historical notes, exercises, and open problems accompany each chapter.

Techniques of asymptotic analysis

Author: L. Sirovich

Publisher: Springer

ISBN: 9780387900223

Category: Mathematics

Page: 306

View: 4509

Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations

Author: Anatoliy M Samoilenko,Oleksandr Stanzhytskyi

Publisher: World Scientific

ISBN: 981446239X

Category: Mathematics

Page: 324

View: 7535

Differential equations with random perturbations are the mathematical models of real-world processes that cannot be described via deterministic laws, and their evolution depends on random factors. The modern theory of differential equations with random perturbations is on the edge of two mathematical disciplines: random processes and ordinary differential equations. Consequently, the sources of these methods come both from the theory of random processes and from the classic theory of differential equations. This work focuses on the approach to stochastic equations from the perspective of ordinary differential equations. For this purpose, both asymptotic and qualitative methods which appeared in the classical theory of differential equations and nonlinear mechanics are developed. Contents:Differential Equations with Random Right-Hand Sides and Impulsive EffectsInvariant Sets for Systems with Random PerturbationsLinear and Quasilinear Stochastic Ito SystemsExtensions of Ito Systems on a TorusThe Averaging Method for Equations with Random Perturbations Readership: Graduate students and researchers in mathematics and physics. Keywords:Stochastic Systems;Invariant Manifold;Invariant Torus;Lyapunov Function;Stability;Periodic Solutions;Reduction PrincipleKey Features:Develops new methods of studying the stochastic differential equations; contrary to the existing purely probabilistic methods, these methods are based on the differential equations approachStudies new classes of stochastic systems, for instance, the stochastic expansions of dynamical systems on the torus, enabling the study of general oscillatory systems subject to the influences of random factorsBridges the gap between the stochastic differential equations and ordinary differential equations, namely, it describes which properties of the ordinary differential equations remain unchanged, and which new properties appear in the stochastic caseReviews: "This book is well written and readable. Most results included in the book are by the authors. All chapters contain a final section with comments and references, where the authors make a detailed description of the origin of the results. This is a helpful point for all readers, especially for researchers in the field." Mathematical Reviews "This monograph collects a great variety of stimulating results concerning random perturbation theory always deeply rooted in the classical theory of ordinary differential equations and celestial mechanics. Despite its technical content the text is written in a clear and accessible way, with many insightful explanations. The fact that each chapter closes with a detailed review on the current literature and the historic development of the theory is highly appreciated." Zentralblatt MATH