Analysis

DOWNLOAD NOW »

Author: P. E. Kopp

Publisher: Butterworth-Heinemann

ISBN: 0340645962

Category: Mathematics

Page: 188

View: 9232

This book builds on the material covered in Numbers, Sequences and Series, and provides students with a thorough understanding of the subject as it is covered on first year courses.

Groups

DOWNLOAD NOW »

Author: Camilla R. Jordan,David A. Jordan

Publisher: Butterworth-Heinemann

ISBN: 034061045X

Category: Mathematics

Page: 207

View: 8512

Introduction to mathematical groups

Numbers, Sequences and Series

DOWNLOAD NOW »

Author: Keith E. Hirst

Publisher: Butterworth-Heinemann

ISBN: 0340610433

Category: Mathematics

Page: 198

View: 9355

Concerned with the logical foundations of number systems from integers to complex numbers.

Probability

DOWNLOAD NOW »

Author: John H. McColl

Publisher: Butterworth-Heinemann

ISBN: N.A

Category: Mathematics

Page: 182

View: 1902

Probability is relevant to so many different subject areas that its importance as a mathematical technique cannot be underestimated. This book provides a comprehensive, user-friendly introduction to the subject. The step-by-step approach taken by the author allows students to develop knowledge at their own pace and, by working through the numerous exercises, they are ensured a full understanding of the material before moving on to more advanced sections. Traditional examples of probablistic theory, such as coins and dice, are included but the author has also used many exercises based on real-life problems. The result is an introduction to probability that avoids the overly confusing, theoretical approach often adopted in this area, and provides a simple and concise text that will be invaluable to all studying first and second year courses on the subject.

Modular Functions and Dirichlet Series in Number Theory

DOWNLOAD NOW »

Author: Tom M. Apostol

Publisher: Springer Science & Business Media

ISBN: 1468499106

Category: Mathematics

Page: 198

View: 6304

This is the second volume of a 2-volume textbook* which evolved from a course (Mathematics 160) offered at the California Institute of Technology du ring the last 25 years. The second volume presupposes a background in number theory com parable to that provided in the first volume, together with a knowledge of the basic concepts of complex analysis. Most of the present volume is devoted to elliptic functions and modular functions with some of their number-theoretic applications. Among the major topics treated are Rademacher's convergent series for the partition function, Lehner's congruences for the Fourier coefficients of the modular functionj( r), and Hecke's theory of entire forms with multiplicative Fourier coefficients. The last chapter gives an account of Bohr's theory of equivalence of general Dirichlet series. Both volumes of this work emphasize classical aspects of a subject wh ich in recent years has undergone a great deal of modern development. It is hoped that these volumes will help the nonspecialist become acquainted with an important and fascinating part of mathematics and, at the same time, will provide some of the background that belongs to the repertory of every specialist in the field. This volume, like the first, is dedicated to the students who have taken this course and have gone on to make notable contributions to number theory and other parts of mathematics. T. M. A. January, 1976 * The first volume is in the Springer-Verlag series Undergraduate Texts in Mathematics under the title Introduction to Analytic Number Theory.

Linear Algebra

DOWNLOAD NOW »

Author: Reg Allenby

Publisher: Butterworth-Heinemann

ISBN: 0080571794

Category: Mathematics

Page: 240

View: 7370

As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.

A Second Course in Complex Analysis

DOWNLOAD NOW »

Author: William A. Veech

Publisher: Courier Corporation

ISBN: 048615193X

Category: Mathematics

Page: 256

View: 2267

Geared toward upper-level undergraduates and graduate students, this clear, self-contained treatment of important areas in complex analysis is chiefly classical in content and emphasizes geometry of complex mappings. 1967 edition.

Vectors in Two Or Three Dimensions

DOWNLOAD NOW »

Author: A. E. Hirst

Publisher: Elsevier

ISBN: 0340614692

Category: Mathematics

Page: 134

View: 3706

Vectors in 2 or 3 Dimensions provides an introduction to vectors from their very basics. The author has approached the subject from a geometrical standpoint and although applications to mechanics will be pointed out and techniques from linear algebra employed, it is the geometric view which is emphasised throughout. Properties of vectors are initially introduced before moving on to vector algebra and transformation geometry. Vector calculus as a means of studying curves and surfaces in 3 dimensions and the concept of isometry are introduced later, providing a stepping stone to more advanced theories. * Adopts a geometric approach * Develops gradually, building from basics to the concept of isometry and vector calculus * Assumes virtually no prior knowledge * Numerous worked examples, exercises and challenge questions

Partitions, q-Series, and Modular Forms

DOWNLOAD NOW »

Author: Krishnaswami Alladi,Frank Garvan

Publisher: Springer Science & Business Media

ISBN: 1461400287

Category: Mathematics

Page: 224

View: 1944

Partitions, q-Series, and Modular Forms contains a collection of research and survey papers that grew out of a Conference on Partitions, q-Series and Modular Forms at the University of Florida, Gainesville in March 2008. It will be of interest to researchers and graduate students that would like to learn of recent developments in the theory of q-series and modular and how it relates to number theory, combinatorics and special functions.

Vector Calculus

DOWNLOAD NOW »

Author: William Cox

Publisher: Butterworth-Heinemann

ISBN: 0080572952

Category: Mathematics

Page: 256

View: 7238

Building on previous texts in the Modular Mathematics series, in particular 'Vectors in Two or Three Dimensions' and 'Calculus and ODEs', this book introduces the student to the concept of vector calculus. It provides an overview of some of the key techniques as well as examining functions of more than one variable, including partial differentiation and multiple integration. Undergraduates who already have a basic understanding of calculus and vectors, will find this text provides tools with which to progress onto further studies; scientists who need an overview of higher order differential equations will find it a useful introduction and basic reference.

Fourier Analysis on Number Fields

DOWNLOAD NOW »

Author: Dinakar Ramakrishnan,Robert J. Valenza

Publisher: Springer Science & Business Media

ISBN: 1475730853

Category: Mathematics

Page: 354

View: 8646

A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.

Calculus of One Variable

DOWNLOAD NOW »

Author: K.E. Hirst

Publisher: Springer Science & Business Media

ISBN: 1846282225

Category: Mathematics

Page: 268

View: 2303

Adopts a user-friendly approach, with an emphasis on worked examples and exercises, rather than abstract theory The computer algebra and graphical package MAPLE is used to illustrate many of the ideas and provides an additional aid to teaching and learning Supplementary material, including detailed solutions to exercises and MAPLE worksheets, is available via the web

Elementary Analysis

The Theory of Calculus

DOWNLOAD NOW »

Author: Kenneth A. Ross

Publisher: Springer Science & Business Media

ISBN: 1461462711

Category: Mathematics

Page: 412

View: 6174

For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

Numbers and Proofs

DOWNLOAD NOW »

Author: Reg Allenby

Publisher: Elsevier

ISBN: 0080928773

Category: Mathematics

Page: 288

View: 3814

'Numbers and Proofs' presents a gentle introduction to the notion of proof to give the reader an understanding of how to decipher others' proofs as well as construct their own. Useful methods of proof are illustrated in the context of studying problems concerning mainly numbers (real, rational, complex and integers). An indispensable guide to all students of mathematics. Each proof is preceded by a discussion which is intended to show the reader the kind of thoughts they might have before any attempt proof is made. Established proofs which the student is in a better position to follow then follow. Presented in the author's entertaining and informal style, and written to reflect the changing profile of students entering universities, this book will prove essential reading for all seeking an introduction to the notion of proof as well as giving a definitive guide to the more common forms. Stressing the importance of backing up "truths" found through experimentation, with logically sound and watertight arguments, it provides an ideal bridge to more complex undergraduate maths.

Groups, Rings and Fields

DOWNLOAD NOW »

Author: David A.R. Wallace

Publisher: Springer Science & Business Media

ISBN: 1447104250

Category: Mathematics

Page: 248

View: 9755

This is a basic introduction to modern algebra, providing a solid understanding of the axiomatic treatment of groups and then rings, aiming to promote a feeling for the evolutionary and historical development of the subject. It includes problems and fully worked solutions, enabling readers to master the subject rather than simply observing it.

Discrete Mathematics

DOWNLOAD NOW »

Author: Amanda Chetwynd,Peter Diggle

Publisher: Elsevier

ISBN: 0080928609

Category: Mathematics

Page: 224

View: 2018

As an introduction to discrete mathematics, this text provides a straightforward overview of the range of mathematical techniques available to students. Assuming very little prior knowledge, and with the minimum of technical complication, it gives an account of the foundations of modern mathematics: logic; sets; relations and functions. It then develops these ideas in the context of three particular topics: combinatorics (the mathematics of counting); probability (the mathematics of chance) and graph theory (the mathematics of connections in networks). Worked examples and graded exercises are used throughout to develop ideas and concepts. The format of this book is such that it can be easily used as the basis for a complete modular course in discrete mathematics.

Real Analysis

Foundations and Functions of One Variable

DOWNLOAD NOW »

Author: Miklós Laczkovich,Vera T. Sós

Publisher: Springer

ISBN: 1493927663

Category: Mathematics

Page: 483

View: 1763

Based on courses given at Eötvös Loránd University (Hungary) over the past 30 years, this introductory textbook develops the central concepts of the analysis of functions of one variable — systematically, with many examples and illustrations, and in a manner that builds upon, and sharpens, the student’s mathematical intuition. The book provides a solid grounding in the basics of logic and proofs, sets, and real numbers, in preparation for a study of the main topics: limits, continuity, rational functions and transcendental functions, differentiation, and integration. Numerous applications to other areas of mathematics, and to physics, are given, thereby demonstrating the practical scope and power of the theoretical concepts treated. In the spirit of learning-by-doing, Real Analysis includes more than 500 engaging exercises for the student keen on mastering the basics of analysis. The wealth of material, and modular organization, of the book make it adaptable as a textbook for courses of various levels; the hints and solutions provided for the more challenging exercises make it ideal for independent study.

Mathematical Statistics and Data Analysis

DOWNLOAD NOW »

Author: John A. Rice

Publisher: Cengage Learning

ISBN: 0534399428

Category: Mathematics

Page: 688

View: 371

This is the first text in a generation to re-examine the purpose of the mathematical statistics course. The book's approach interweaves traditional topics with data analysis and reflects the use of the computer with close ties to the practice of statistics. The author stresses analysis of data, examines real problems with real data, and motivates the theory. The book's descriptive statistics, graphical displays, and realistic applications stand in strong contrast to traditional texts that are set in abstract settings. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Lectures on Modular Forms

DOWNLOAD NOW »

Author: Joseph J. Lehner

Publisher: Courier Dover Publications

ISBN: 0486821404

Category: Mathematics

Page: 96

View: 9745

This concise volume presents an expository account of the theory of modular forms and its application to number theory and analysis. Suitable for advanced undergraduates and graduate students in mathematics, the treatment starts with classical material and leads gradually to modern developments. Prerequisites include a grasp of the elements of complex variable theory, group theory, and number theory. The opening chapters define modular forms, develop their most important properties, and introduce the Hecke modular forms. Subsequent chapters explore the automorphisms of a compact Riemann surface, develop congruences and other arithmetic properties for the Fourier coefficients of Klein's absolute modular invariant, and discuss analogies with the Hecke theory as well as with the Ramanujan congruences for the partition function. Substantial notes at the end of each chapter provide detailed explanations of the text's more difficult points.

Real Analysis

Series, Functions of Several Variables, and Applications

DOWNLOAD NOW »

Author: Miklós Laczkovich,Vera T. Sós

Publisher: Springer

ISBN: 149397369X

Category: Mathematics

Page: 392

View: 9718

This book develops the theory of multivariable analysis, building on the single variable foundations established in the companion volume, Real Analysis: Foundations and Functions of One Variable. Together, these volumes form the first English edition of the popular Hungarian original, Valós Analízis I & II, based on courses taught by the authors at Eötvös Loránd University, Hungary, for more than 30 years. Numerous exercises are included throughout, offering ample opportunities to master topics by progressing from routine to difficult problems. Hints or solutions to many of the more challenging exercises make this book ideal for independent study, or further reading. Intended as a sequel to a course in single variable analysis, this book builds upon and expands these ideas into higher dimensions. The modular organization makes this text adaptable for either a semester or year-long introductory course. Topics include: differentiation and integration of functions of several variables; infinite numerical series; sequences and series of functions; and applications to other areas of mathematics. Many historical notes are given and there is an emphasis on conceptual understanding and context, be it within mathematics itself or more broadly in applications, such as physics. By developing the student’s intuition throughout, many definitions and results become motivated by insights from their context.