An Introduction to Measure and Probability

DOWNLOAD NOW »

Author: J.C. Taylor

Publisher: Springer Science & Business Media

ISBN: 1461206596

Category: Mathematics

Page: 324

View: 6014

Assuming only calculus and linear algebra, Professor Taylor introduces readers to measure theory and probability, discrete martingales, and weak convergence. This is a technically complete, self-contained and rigorous approach that helps the reader to develop basic skills in analysis and probability. Students of pure mathematics and statistics can thus expect to acquire a sound introduction to basic measure theory and probability, while readers with a background in finance, business, or engineering will gain a technical understanding of discrete martingales in the equivalent of one semester. J. C. Taylor is the author of numerous articles on potential theory, both probabilistic and analytic, and is particularly interested in the potential theory of symmetric spaces.

An Introduction to Measure-Theoretic Probability

DOWNLOAD NOW »

Author: George G. Roussas

Publisher: Academic Press

ISBN: 0128002905

Category: Mathematics

Page: 426

View: 7017

An Introduction to Measure-Theoretic Probability, Second Edition, employs a classical approach to teaching the basics of measure theoretic probability. This book provides in a concise, yet detailed way, the bulk of the probabilistic tools that a student working toward an advanced degree in statistics, probability and other related areas should be equipped with. This edition requires no prior knowledge of measure theory, covers all its topics in great detail, and includes one chapter on the basics of ergodic theory and one chapter on two cases of statistical estimation. Topics range from the basic properties of a measure to modes of convergence of a sequence of random variables and their relationships; the integral of a random variable and its basic properties; standard convergence theorems; standard moment and probability inequalities; the Hahn-Jordan Decomposition Theorem; the Lebesgue Decomposition T; conditional expectation and conditional probability; theory of characteristic functions; sequences of independent random variables; and ergodic theory. There is a considerable bend toward the way probability is actually used in statistical research, finance, and other academic and nonacademic applied pursuits. Extensive exercises and practical examples are included, and all proofs are presented in full detail. Complete and detailed solutions to all exercises are available to the instructors on the book companion site. This text will be a valuable resource for graduate students primarily in statistics, mathematics, electrical and computer engineering or other information sciences, as well as for those in mathematical economics/finance in the departments of economics. Provides in a concise, yet detailed way, the bulk of probabilistic tools essential to a student working toward an advanced degree in statistics, probability, and other related fields Includes extensive exercises and practical examples to make complex ideas of advanced probability accessible to graduate students in statistics, probability, and related fields All proofs presented in full detail and complete and detailed solutions to all exercises are available to the instructors on book companion site Considerable bend toward the way probability is used in statistics in non-mathematical settings in academic, research and corporate/finance pursuits.

Measure Theory and Probability Theory

DOWNLOAD NOW »

Author: Krishna B. Athreya,Soumendra N. Lahiri

Publisher: Springer Science & Business Media

ISBN: 038732903X

Category: Business & Economics

Page: 618

View: 873

This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.

Probability and Measure

DOWNLOAD NOW »

Author: Patrick Billingsley

Publisher: John Wiley & Sons

ISBN: 1118341910

Category: Mathematics

Page: 656

View: 2165

Praise for the Third Edition "It is, as far as I'm concerned, among the best books in math ever written....if you are a mathematician and want to have the top reference in probability, this is it." (Amazon.com, January 2006) A complete and comprehensive classic in probability and measure theory Probability and Measure, Anniversary Edition by Patrick Billingsley celebrates the achievements and advancements that have made this book a classic in its field for the past 35 years. Now re-issued in a new style and format, but with the reliable content that the third edition was revered for, this Anniversary Edition builds on its strong foundation of measure theory and probability with Billingsley's unique writing style. In recognition of 35 years of publication, impacting tens of thousands of readers, this Anniversary Edition has been completely redesigned in a new, open and user-friendly way in order to appeal to university-level students. This book adds a new foreward by Steve Lally of the Statistics Department at The University of Chicago in order to underscore the many years of successful publication and world-wide popularity and emphasize the educational value of this book. The Anniversary Edition contains features including: An improved treatment of Brownian motion Replacement of queuing theory with ergodic theory Theory and applications used to illustrate real-life situations Over 300 problems with corresponding, intensive notes and solutions Updated bibliography An extensive supplement of additional notes on the problems and chapter commentaries Patrick Billingsley was a first-class, world-renowned authority in probability and measure theory at a leading U.S. institution of higher education. He continued to be an influential probability theorist until his unfortunate death in 2011. Billingsley earned his Bachelor's Degree in Engineering from the U.S. Naval Academy where he served as an officer. he went on to receive his Master's Degree and doctorate in Mathematics from Princeton University.Among his many professional awards was the Mathematical Association of America's Lester R. Ford Award for mathematical exposition. His achievements through his long and esteemed career have solidified Patrick Billingsley's place as a leading authority in the field and been a large reason for his books being regarded as classics. This Anniversary Edition of Probability and Measure offers advanced students, scientists, and engineers an integrated introduction to measure theory and probability. Like the previous editions, this Anniversary Edition is a key resource for students of mathematics, statistics, economics, and a wide variety of disciplines that require a solid understanding of probability theory.

An Introduction to Ergodic Theory

DOWNLOAD NOW »

Author: Peter Walters

Publisher: Springer Science & Business Media

ISBN: 9780387951522

Category: Mathematics

Page: 250

View: 4810

The first part of this introduction to ergodic theory addresses measure-preserving transformations of probability spaces and covers such topics as recurrence properties and the Birkhoff ergodic theorem. The second part focuses on the ergodic theory of continuous transformations of compact metrizable spaces. Several examples are detailed, and the final chapter outlines results and applications of ergodic theory to other branches of mathematics.

A First Look at Rigorous Probability Theory

DOWNLOAD NOW »

Author: Jeffrey Seth Rosenthal

Publisher: World Scientific

ISBN: 9812703705

Category: Mathematics

Page: 219

View: 9476

Features an introduction to probability theory using measure theory. This work provides proofs of the essential introductory results and presents the measure theory and mathematical details in terms of intuitive probabilistic concepts, rather than as separate, imposing subjects.

An Introduction to Information Theory

DOWNLOAD NOW »

Author: Fazlollah M. Reza

Publisher: Courier Corporation

ISBN: 0486158446

Category: Mathematics

Page: 528

View: 9464

Graduate-level study for engineering students presents elements of modern probability theory, information theory, coding theory, more. Emphasis on sample space, random variables, capacity, etc. Many reference tables and extensive bibliography. 1961 edition.

An Introduction to the Theory of Probability

DOWNLOAD NOW »

Author: Parimal Mukhopadhyay

Publisher: World Scientific

ISBN: 9814313424

Category: Mathematics

Page: 474

View: 5294

The Theory of Probability is a major tool that can be used to explain and understand the various phenomena in different natural, physical and social sciences. This book provides a systematic exposition of the theory in a setting which contains a balanced mixture of the classical approach and the modern day axiomatic approach. After reviewing the basis of the theory, the book considers univariate distributions, bivariate normal distribution, multinomial distribution and convergence of random variables. Difficult ideas have been explained lucidly and have been augmented with explanatory notes, examples and exercises. The basic requirement for reading this book is simply a knowledge of mathematics at graduate level. This book tries to explain the difficult ideas in the axiomatic approach to the theory of probability in a clear and comprehensible manner. It includes several unusual distributions including the power series distribution that have been covered in great detail. Readers will find many worked-out examples and exercises with hints, which will make the book easily readable and engaging. The author is a former Professor of the Indian Statistical Institute, India.

Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse

DOWNLOAD NOW »

Author: Kai L. Chung

Publisher: Springer-Verlag

ISBN: 3642670334

Category: Mathematics

Page: 346

View: 4178

Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

An Introduction to Measure Theory

DOWNLOAD NOW »

Author: Terence Tao

Publisher: American Mathematical Soc.

ISBN: 0821869191

Category: Mathematics

Page: 206

View: 2765

This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Caratheodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

An Introduction to Quantum Stochastic Calculus

DOWNLOAD NOW »

Author: K.R. Parthasarathy

Publisher: Springer Science & Business Media

ISBN: 3034805667

Category: Mathematics

Page: 290

View: 535

An Introduction to Quantum Stochastic Calculus aims to deepen our understanding of the dynamics of systems subject to the laws of chance both from the classical and the quantum points of view and stimulate further research in their unification. This is probably the first systematic attempt to weave classical probability theory into the quantum framework and provides a wealth of interesting features: The origin of Ito’s correction formulae for Brownian motion and the Poisson process can be traced to commutation relations or, equivalently, the uncertainty principle. Quantum stochastic integration enables the possibility of seeing new relationships between fermion and boson fields. Many quantum dynamical semigroups as well as classical Markov semigroups are realised through unitary operator evolutions. The text is almost self-contained and requires only an elementary knowledge of operator theory and probability theory at the graduate level. - - - This is an excellent volume which will be a valuable companion both to those who are already active in the field and those who are new to it. Furthermore there are a large number of stimulating exercises scattered through the text which will be invaluable to students. (Mathematical Reviews) This monograph gives a systematic and self-contained introduction to the Fock space quantum stochastic calculus in its basic form (...) by making emphasis on the mathematical aspects of quantum formalism and its connections with classical probability and by extensive presentation of carefully selected functional analytic material. This makes the book very convenient for a reader with the probability-theoretic orientation, wishing to make acquaintance with wonders of the noncommutative probability, and, more specifcally, for a mathematics student studying this field. (Zentralblatt MATH) Elegantly written, with obvious appreciation for fine points of higher mathematics (...) most notable is [the] author's effort to weave classical probability theory into [a] quantum framework. (The American Mathematical Monthly)

Elementary Probability Theory

With Stochastic Processes and an Introduction to Mathematical Finance

DOWNLOAD NOW »

Author: Kai Lai Chung,Farid AitSahlia

Publisher: Springer Science & Business Media

ISBN: 0387215484

Category: Mathematics

Page: 404

View: 464

This book provides an introduction to probability theory and its applications. The emphasis is on essential probabilistic reasoning, which is illustrated with a large number of samples. The fourth edition adds material related to mathematical finance as well as expansions on stable laws and martingales. From the reviews: "Almost thirty years after its first edition, this charming book continues to be an excellent text for teaching and for self study." -- STATISTICAL PAPERS

An Introduction to Mathematical Modeling

DOWNLOAD NOW »

Author: Edward A. Bender

Publisher: Courier Corporation

ISBN: 0486137120

Category: Mathematics

Page: 272

View: 2114

Accessible text features over 100 reality-based examples pulled from the science, engineering, and operations research fields. Prerequisites: ordinary differential equations, continuous probability. Numerous references. Includes 27 black-and-white figures. 1978 edition.

An Introduction to Copulas

DOWNLOAD NOW »

Author: Roger B. Nelsen

Publisher: Springer Science & Business Media

ISBN: 1475730764

Category: Mathematics

Page: 218

View: 6384

Copulas are functions that join multivariate distribution functions to their one-dimensional margins. The study of copulas and their role in statistics is a new but vigorously growing field. In this book the student or practitioner of statistics and probability will find discussions of the fundamental properties of copulas and some of their primary applications. The applications include the study of dependence and measures of association, and the construction of families of bivariate distributions. With nearly a hundred examples and over 150 exercises, this book is suitable as a text or for self-study. The only prerequisite is an upper level undergraduate course in probability and mathematical statistics, although some familiarity with nonparametric statistics would be useful. Knowledge of measure-theoretic probability is not required. Roger B. Nelsen is Professor of Mathematics at Lewis & Clark College in Portland, Oregon. He is also the author of "Proofs Without Words: Exercises in Visual Thinking," published by the Mathematical Association of America.

Wahrscheinlichkeitstheorie und Stochastische Prozesse

DOWNLOAD NOW »

Author: Michael Mürmann

Publisher: Springer-Verlag

ISBN: 364238160X

Category: Mathematics

Page: 428

View: 3743

Dieses Lehrbuch beschäftigt sich mit den zentralen Gebieten einer maßtheoretisch orientierten Wahrscheinlichkeitstheorie im Umfang einer zweisemestrigen Vorlesung. Nach den Grundlagen werden Grenzwertsätze und schwache Konvergenz behandelt. Es folgt die Darstellung und Betrachtung der stochastischen Abhängigkeit durch die bedingte Erwartung, die mit der Radon-Nikodym-Ableitung realisiert wird. Sie wird angewandt auf die Theorie der stochastischen Prozesse, die nach der allgemeinen Konstruktion aus der Untersuchung von Martingalen und Markov-Prozessen besteht. Neu in einem Lehrbuch über allgemeine Wahrscheinlichkeitstheorie ist eine Einführung in die stochastische Analysis von Semimartingalen auf der Grundlage einer geeigneten Stetigkeitsbedingung mit Anwendungen auf die Theorie der Finanzmärkte. Das Buch enthält zahlreiche Übungen, teilweise mit Lösungen. Neben der Theorie vertiefen Anmerkungen, besonders zu mathematischen Modellen für Phänomene der Realität, das Verständnis.​

A Course on Large Deviations with an Introduction to Gibbs Measures

DOWNLOAD NOW »

Author: Firas Rassoul-Agha,Timo Seppäläinen

Publisher: American Mathematical Soc.

ISBN: 0821875787

Category: Large deviations

Page: 318

View: 6098

This is an introductory course on the methods of computing asymptotics of probabilities of rare events: the theory of large deviations. The book combines large deviation theory with basic statistical mechanics, namely Gibbs measures with their variational characterization and the phase transition of the Ising model, in a text intended for a one semester or quarter course. The book begins with a straightforward approach to the key ideas and results of large deviation theory in the context of independent identically distributed random variables. This includes Cramér's theorem, relative entropy, Sanov's theorem, process level large deviations, convex duality, and change of measure arguments. Dependence is introduced through the interactions potentials of equilibrium statistical mechanics. The phase transition of the Ising model is proved in two different ways: first in the classical way with the Peierls argument, Dobrushin's uniqueness condition, and correlation inequalities and then a second time through the percolation approach. Beyond the large deviations of independent variables and Gibbs measures, later parts of the book treat large deviations of Markov chains, the Gärtner-Ellis theorem, and a large deviation theorem of Baxter and Jain that is then applied to a nonstationary process and a random walk in a dynamical random environment. The book has been used with students from mathematics, statistics, engineering, and the sciences and has been written for a broad audience with advanced technical training. Appendixes review basic material from analysis and probability theory and also prove some of the technical results used in the text.

Integration and Probability

DOWNLOAD NOW »

Author: Paul Malliavin

Publisher: Springer Science & Business Media

ISBN: 1461242029

Category: Mathematics

Page: 326

View: 1691

An introduction to analysis with the right mix of abstract theories and concrete problems. Starting with general measure theory, the book goes on to treat Borel and Radon measures and introduces the reader to Fourier analysis in Euclidean spaces with a treatment of Sobolev spaces, distributions, and the corresponding Fourier analysis. It continues with a Hilbertian treatment of the basic laws of probability including Doob's martingale convergence theorem and finishes with Malliavin's "stochastic calculus of variations" developed in the context of Gaussian measure spaces. This invaluable contribution gives a taste of the fact that analysis is not a collection of independent theories, but can be treated as a whole.

Uncertainty Theory

DOWNLOAD NOW »

Author: Baoding Liu

Publisher: Springer

ISBN: 3540731652

Category: Mathematics

Page: 255

View: 8954

This book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory. The purpose is to equip the readers with an axiomatic approach to deal with uncertainty. For this new edition the entire text has been totally rewritten. The chapters on chance theory and uncertainty theory are completely new. Mathematicians, researchers, engineers, designers, and students will find this work a stimulating and useful reference.

Measure, Probability, and Mathematical Finance

A Problem-Oriented Approach

DOWNLOAD NOW »

Author: Guojun Gan,Chaoqun Ma,Hong Xie

Publisher: John Wiley & Sons

ISBN: 1118831969

Category: Business & Economics

Page: 744

View: 638

An introduction to the mathematical theory and financial models developed and used on Wall Street Providing both a theoretical and practical approach to the underlying mathematical theory behind financial models, Measure, Probability, and Mathematical Finance: A Problem-Oriented Approach presents important concepts and results in measure theory, probability theory, stochastic processes, and stochastic calculus. Measure theory is indispensable to the rigorous development of probability theory and is also necessary to properly address martingale measures, the change of numeraire theory, and LIBOR market models. In addition, probability theory is presented to facilitate the development of stochastic processes, including martingales and Brownian motions, while stochastic processes and stochastic calculus are discussed to model asset prices and develop derivative pricing models. The authors promote a problem-solving approach when applying mathematics in real-world situations, and readers are encouraged to address theorems and problems with mathematical rigor. In addition, Measure, Probability, and Mathematical Finance features: A comprehensive list of concepts and theorems from measure theory, probability theory, stochastic processes, and stochastic calculus Over 500 problems with hints and select solutions to reinforce basic concepts and important theorems Classic derivative pricing models in mathematical finance that have been developed and published since the seminal work of Black and Scholes Measure, Probability, and Mathematical Finance: A Problem-Oriented Approach is an ideal textbook for introductory quantitative courses in business, economics, and mathematical finance at the upper-undergraduate and graduate levels. The book is also a useful reference for readers who need to build their mathematical skills in order to better understand the mathematical theory of derivative pricing models.

Concepts of Probability Theory

Second Revised Edition

DOWNLOAD NOW »

Author: Paul E. Pfeiffer

Publisher: Courier Corporation

ISBN: 0486165663

Category: Mathematics

Page: 416

View: 1538

Using the Kolmogorov model, this intermediate-level text discusses random variables, probability distributions, mathematical expectation, random processes, more. For advanced undergraduates students of science, engineering, or math. Includes problems with answers and six appendixes. 1965 edition.