An Introduction to Homological Algebra

DOWNLOAD NOW »

Author: Charles A. Weibel

Publisher: Cambridge University Press

ISBN: 9780521559874

Category: Mathematics

Page: 450

View: 5876

A portrait of the subject of homological algebra as it exists today.

An Introduction to Homological Algebra

DOWNLOAD NOW »

Author: Joseph J. Rotman

Publisher: Springer Science & Business Media

ISBN: 0387683240

Category: Mathematics

Page: 710

View: 3686

Graduate mathematics students will find this book an easy-to-follow, step-by-step guide to the subject. Rotman’s book gives a treatment of homological algebra which approaches the subject in terms of its origins in algebraic topology. In this new edition the book has been updated and revised throughout and new material on sheaves and cup products has been added. The author has also included material about homotopical algebra, alias K-theory. Learning homological algebra is a two-stage affair. First, one must learn the language of Ext and Tor. Second, one must be able to compute these things with spectral sequences. Here is a work that combines the two.

Introduction to Abelian Model Structures and Gorenstein Homological Dimensions

DOWNLOAD NOW »

Author: Marco A. P. Bullones

Publisher: CRC Press

ISBN: 149872535X

Category: Mathematics

Page: 344

View: 4471

Introduction to Abelian Model Structures and Gorenstein Homological Dimensions provides a starting point to study the relationship between homological and homotopical algebra, a very active branch of mathematics. The book shows how to obtain new model structures in homological algebra by constructing a pair of compatible complete cotorsion pairs related to a specific homological dimension and then applying the Hovey Correspondence to generate an abelian model structure. The first part of the book introduces the definitions and notations of the universal constructions most often used in category theory. The next part presents a proof of the Eklof and Trlifaj theorem in Grothedieck categories and covers M. Hovey’s work that connects the theories of cotorsion pairs and model categories. The final two parts study the relationship between model structures and classical and Gorenstein homological dimensions and explore special types of Grothendieck categories known as Gorenstein categories. As self-contained as possible, this book presents new results in relative homological algebra and model category theory. The author also re-proves some established results using different arguments or from a pedagogical point of view. In addition, he proves folklore results that are difficult to locate in the literature.

Algebra

DOWNLOAD NOW »

Author: Siegfried Bosch

Publisher: Springer-Verlag

ISBN: 3642395678

Category: Mathematics

Page: 370

View: 9335

Eine verständliche, konzise und immer flüssige Einführung in die Algebra, die insbesondere durch ihre sorgfältige didaktische Aufbereitung bei vielen Studierenden Freunde findet. Die vorliegende Auflage bietet neben zahlreichen Aufgaben (mit Lösungshinweisen) sowie einführenden und motivierenden Vorbemerkungen auch Ausblicke auf neuere Entwicklungen. Auch selten im Lehrbuch behandelte Themen wie Resultanten, Diskriminanten, Kummer-Theorie und Witt-Vektoren werden angesprochen. Die berühmten Formeln aus dem 16. Jahrhundert zur Auflösung von Gleichungen dritten und vierten Grades werden ausführlich erläutert und in den Rahmen der Galois-Theorie eingeordnet. Ein klares, modernes und inhaltsreiches Lehrbuch, das für das Studium der Algebra unentbehrlich ist.

Leavitt Path Algebras

DOWNLOAD NOW »

Author: Gene Abrams,Pere Ara,Mercedes Siles Molina

Publisher: Springer

ISBN: 1447173449

Category: Mathematics

Page: 289

View: 1911

This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and symbolic dynamics. With its descriptive writing style, this book is highly accessible.

Noncommutative Algebraic Geometry

DOWNLOAD NOW »

Author: Gwyn Bellamy,Daniel Rogalski,Travis Schedler,J. Toby Stafford,Michael Wemyss

Publisher: Cambridge University Press

ISBN: 1107129540

Category: Mathematics

Page: N.A

View: 8293

This book provides a comprehensive introduction to the interactions between noncommutative algebra and classical algebraic geometry.

A Course in Homological Algebra

DOWNLOAD NOW »

Author: Peter J. Hilton,Urs Stammbach

Publisher: Springer Science & Business Media

ISBN: 1441985662

Category: Mathematics

Page: 366

View: 378

Homological algebra has found a large number of applications in many fields ranging from finite and infinite group theory to representation theory, number theory, algebraic topology and sheaf theory. In the new edition of this broad introduction to the field, the authors address a number of select topics and describe their applications, illustrating the range and depth of their developments. A comprehensive set of exercises is included.

An Algebraic Introduction to Complex Projective Geometry

Commutative Algebra

DOWNLOAD NOW »

Author: Christian Peskine,Peskine Christian

Publisher: Cambridge University Press

ISBN: 9780521480727

Category: Mathematics

Page: 244

View: 7326

In this introduction to commutative algebra, the author choses a route that leads the reader through the essential ideas, without getting embroiled in technicalities. He takes the reader quickly to the fundamentals of complex projective geometry, requiring only a basic knowledge of linear and multilinear algebra and some elementary group theory. The author divides the book into three parts. In the first, he develops the general theory of noetherian rings and modules. He includes a certain amount of homological algebra, and he emphasizes rings and modules of fractions as preparation for working with sheaves. In the second part, he discusses polynomial rings in several variables with coefficients in the field of complex numbers. After Noether's normalization lemma and Hilbert's Nullstellensatz, the author introduces affine complex schemes and their morphisms; he then proves Zariski's main theorem and Chevalley's semi-continuity theorem. Finally, the author's detailed study of Weil and Cartier divisors provides a solid background for modern intersection theory. This is an excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra.

Funktionentheorie

DOWNLOAD NOW »

Author: Eberhard Freitag,Rolf Busam

Publisher: Springer-Verlag

ISBN: 3662073501

Category: Mathematics

Page: 477

View: 4521

Die komplexen Zahlen haben ihre historischen Wurzeln im 16. Jahrhundert, sie entstanden bei dem Versuch, algebraische Gleichungen zu lösen. So führte schon G. CARDANO (1545) formale Ausdrücke wie zum Beispiel 5 ± V-15 ein, um Lösungen quadratischer und kubischer Gleichungen angeben zu können. R. BOMBELLI rechnete um 1560 bereits systematisch mit diesen Ausdrücken 3 und fand 4 als Lösung der Gleichung x = 15x + 4 in der verschlüsselten Form 4 = ~2 + V-121 + ~2 - V-121. Auch bei G. W. LEIBNIZ (1675) findet man Gleichungen dieser Art, wie z.B. J 1 + V-3 + J 1 - V-3 = v6. Im Jahre 1777 führte L. EULER die Bezeichnung i = yCI für die imaginäre Einheit ein. Der Fachausdruck "komplexe Zahl" stammt von C. F. GAUSS (1831). Die strenge Einführung der komplexen Zahlen als Paare reeller Zahlen geht auf W. R. HAMILTON (1837) zurück. Schon in der reellen Analysis ist es gelegentlich vorteilhaft, komplexe Zahlen einzuführen. Man denke beispielsweise an die Integration rationaler Funktio nen, die auf der Partialbruchentwicklung und damit auf dem Fundamentalsatz der Algebra beruht: Über dem Körper der komplexen Zahlen zerfällt jedes Polynom in ein Produkt von Linearfaktoren.

Minimal Resolutions Via Algebraic Discrete Morse Theory

DOWNLOAD NOW »

Author: Michael Jöllenbeck,Volkmar Welker

Publisher: American Mathematical Soc.

ISBN: 0821842579

Category: Mathematics

Page: 74

View: 9452

Forman's discrete Morse theory is studied from an algebraic viewpoint. Analogous to independent work of Emil Skoldberg, the authors show that this theory can be aplied to chain complexes of free modules over a ring and provide four applications of this theory.

Algebraic Geometry and Commutative Algebra

DOWNLOAD NOW »

Author: Siegfried Bosch

Publisher: Springer Science & Business Media

ISBN: 1447148290

Category: Mathematics

Page: 504

View: 9191

Algebraic geometry is a fascinating branch of mathematics that combines methods from both, algebra and geometry. It transcends the limited scope of pure algebra by means of geometric construction principles. Moreover, Grothendieck’s schemes invented in the late 1950s allowed the application of algebraic-geometric methods in fields that formerly seemed to be far away from geometry, like algebraic number theory. The new techniques paved the way to spectacular progress such as the proof of Fermat’s Last Theorem by Wiles and Taylor. The scheme-theoretic approach to algebraic geometry is explained for non-experts. More advanced readers can use the book to broaden their view on the subject. A separate part deals with the necessary prerequisites from commutative algebra. On a whole, the book provides a very accessible and self-contained introduction to algebraic geometry, up to a quite advanced level. Every chapter of the book is preceded by a motivating introduction with an informal discussion of the contents. Typical examples and an abundance of exercises illustrate each section. This way the book is an excellent solution for learning by yourself or for complementing knowledge that is already present. It can equally be used as a convenient source for courses and seminars or as supplemental literature.

Lectures on Algebraic Geometry I

Sheaves, Cohomology of Sheaves, and Applications to Riemann Surfaces

DOWNLOAD NOW »

Author: Günter Harder

Publisher: Springer Science & Business Media

ISBN: 9783834895011

Category: Mathematics

Page: 300

View: 2457

This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern methods have been anticipated by them.

Quod erat knobelandum

Themen, Aufgaben und Lösungen des Schülerzirkels Mathematik der Universität Regensburg

DOWNLOAD NOW »

Author: Clara Löh,Stefan Krauss,Niki Kilbertus

Publisher: Springer-Verlag

ISBN: 3662489562

Category: Mathematics

Page: 279

View: 7796

Fünfzehn ausgewählte mathematische Themen mit Aufgaben und Lösungen laden zum Entdecken und Knobeln ein und bieten Einblicke in die faszinierende Welt der Mathematik - von A wie Aussagenlogik bis Z wie Zahlentheorie. Die Themen wecken so die Neugierde für Mathematik und fördern die Begeisterung von Schülerinnen und Schülern ab Klasse 7. Anleitungen zum mathematischen Problemlösen und Beweisen erleichtern dabei den Einstieg. Das vorliegende Buch enthält das überarbeitete und ergänzte Material des Schülerzirkels Mathematik der Fakultät für Mathematik an der Universität Regensburg aus den Schuljahren 2012/13 bis 2014/15. Stimme zum Buch: "Es ist erfreulich, dass die Aufgaben und Lösungen aus dem Schülerzirkel Mathematik der Universität Regensburg einem breiten Leserkreis zur Verfügung gestellt werden. Die Verbindung von pfiffigen Knobelaufgaben als Einstieg in ein Thema mit der Vermittlung des mathematischen Hintergrundwissens wird sicher vielen Schülerinnen und Schülern den Weg in die Welt der Mathematik ebnen." Hanns-Heinrich Langmann, Projektleiter Bundesweite Mathematik-Wettbewerbe bei Bildung & Begabung

Introduction To Commutative Algebra

DOWNLOAD NOW »

Author: M. F. Atiyah,I. G. MacDonald

Publisher: Westview Press

ISBN: 9780813345444

Category: Mathematics

Page: 138

View: 2781

This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.

Introduction to Noncommutative Algebra

DOWNLOAD NOW »

Author: Matej Brešar

Publisher: Springer

ISBN: 3319086936

Category: Mathematics

Page: 199

View: 5636

Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.

An Introduction to Manifolds

DOWNLOAD NOW »

Author: Loring W. Tu

Publisher: Springer Science & Business Media

ISBN: 1441974008

Category: Mathematics

Page: 410

View: 2146

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

Automorphe Formen

DOWNLOAD NOW »

Author: Anton Deitmar

Publisher: Springer-Verlag

ISBN: 3642123902

Category: Mathematics

Page: 252

View: 7169

Das Buch bietet eine Einführung in die Theorie der automorphen Formen. Beginnend bei klassischen Modulformen führt der Autor seine Leser hin zur modernen, darstellungstheoretischen Beschreibung von automorphen Formen und ihren L-Funktionen. Das Hauptgewicht legt er auf den Übergang von der klassischen, elementaren Sichtweise zu der modernen, durch die Darstellungstheorie begründete Herangehensweise. Diese Art der Verbindung von klassischer und moderner Sichtweise war in der Lehrbuchliteratur bisher nicht zu finden.

Naive Mengenlehre

DOWNLOAD NOW »

Author: Paul R. Halmos

Publisher: Vandenhoeck & Ruprecht

ISBN: 9783525405277

Category: Arithmetic

Page: 132

View: 9862

Numerische Mathematik

DOWNLOAD NOW »

Author: Hans-Rudolf Schwarz,Norbert Köckler

Publisher: Springer-Verlag

ISBN: 9783835190641

Category: Mathematics

Page: 574

View: 1624

Anschaulich und gründlich vermittelt dieses Buch die Grundlagen der Numerik. Die Darstellung des Stoffes ist algorithmisch ausgerichtet. Zur Begründung einer numerischen Methode werden zuerst die theoretischen Grundlagen vermittelt. Anschließend wird das Verfahren so formuliert, dass seine Realisierung als Rechenprogramm einfach ist. Auf der Homepage zum Buch finden Sie zahlreiche Programm-Masken, die die Lösung von Basisproblemen der Numerik ermöglichen.