An Introduction to Banach Space Theory

DOWNLOAD NOW »

Author: Robert E. Megginson

Publisher: Springer Science & Business Media

ISBN: 1461206030

Category: Mathematics

Page: 599

View: 1275

Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.

Topics in Banach Space Theory

DOWNLOAD NOW »

Author: Fernando Albiac,Nigel J. Kalton

Publisher: Springer

ISBN: 3319315579

Category: Mathematics

Page: 508

View: 8278

This text provides the reader with the necessary technical tools and background to reach the frontiers of research without the introduction of too many extraneous concepts. Detailed and accessible proofs are included, as are a variety of exercises and problems. The two new chapters in this second edition are devoted to two topics of much current interest amongst functional analysts: Greedy approximation with respect to bases in Banach spaces and nonlinear geometry of Banach spaces. This new material is intended to present these two directions of research for their intrinsic importance within Banach space theory, and to motivate graduate students interested in learning more about them. This textbook assumes only a basic knowledge of functional analysis, giving the reader a self-contained overview of the ideas and techniques in the development of modern Banach space theory. Special emphasis is placed on the study of the classical Lebesgue spaces Lp (and their sequence space analogues) and spaces of continuous functions. The authors also stress the use of bases and basic sequences techniques as a tool for understanding the isomorphic structure of Banach spaces. /div From the reviews of the First Edition: "The authors of the book...succeeded admirably in creating a very helpful text, which contains essential topics with optimal proofs, while being reader friendly... It is also written in a lively manner, and its involved mathematical proofs are elucidated and illustrated by motivations, explanations and occasional historical comments... I strongly recommend to every graduate student who wants to get acquainted with this exciting part of functional analysis the instructive and pleasant reading of this book..."—Gilles Godefroy, Mathematical Reviews

Introduction to Banach Spaces: Analysis and Probability

DOWNLOAD NOW »

Author: Daniel Li,Hervé Queffélec

Publisher: Cambridge University Press

ISBN: 1107162629

Category: Mathematics

Page: 412

View: 9805

This two-volume text provides a complete overview of the theory of Banach spaces, emphasising its interplay with classical and harmonic analysis (particularly Sidon sets) and probability. The authors give a full exposition of all results, as well as numerous exercises and comments to complement the text and aid graduate students in functional analysis. The book will also be an invaluable reference volume for researchers in analysis. Volume 1 covers the basics of Banach space theory, operatory theory in Banach spaces, harmonic analysis and probability. The authors also provide an annex devoted to compact Abelian groups. Volume 2 focuses on applications of the tools presented in the first volume, including Dvoretzky's theorem, spaces without the approximation property, Gaussian processes, and more. Four leading experts also provide surveys outlining major developments in the field since the publication of the original French edition.

An Introduction to Hilbert Space

DOWNLOAD NOW »

Author: N. Young

Publisher: Cambridge University Press

ISBN: 9780521337175

Category: Mathematics

Page: 239

View: 3227

This textbook is an introduction to the theory of Hilbert spaces and its applications. The notion of a Hilbert space is a central idea in functional analysis and can be used in numerous branches of pure and applied mathematics. Dr. Young stresses these applications particularly for the solution of partial differential equations in mathematical physics and to the approximation of functions in complex analysis. Some basic familiarity with real analysis, linear algebra and metric spaces is assumed, but otherwise the book is self-contained. The book is based on courses given at the University of Glasgow and contains numerous examples and exercises (many with solutions). The book will make an excellent first course in Hilbert space theory at either undergraduate or graduate level and will also be of interest to electrical engineers and physicists, particularly those involved in control theory and filter design.

Introduction to Banach Spaces and Algebras

DOWNLOAD NOW »

Author: Graham R. Allan,Harold G. Dales

Publisher: Oxford University Press

ISBN: 0199206538

Category: Banach algebras

Page: 371

View: 3830

A graduate level text in functional analysis, with an emphasis on Banach algebras. Based on lectures given for Part III of the Cambridge Mathematical Tripos, the text will assume a familiarity with elementary real and complex analysis, and some acquaintance with metric spaces, analytic topology and normed spaces (but not theorems depending on Baire category, or any version of the Hahn-Banach theorem).

Introduction to Operator Theory I

Elements of Functional Analysis

DOWNLOAD NOW »

Author: A. Brown,C. Pearcy

Publisher: Springer Science & Business Media

ISBN: 1461299268

Category: Mathematics

Page: 476

View: 4512

This book was written expressly to serve as a textbook for a one- or two-semester introductory graduate course in functional analysis. Its (soon to be published) companion volume, Operators on Hilbert Space, is in tended to be used as a textbook for a subsequent course in operator theory. In writing these books we have naturally been concerned with the level of preparation of the potential reader, and, roughly speaking, we suppose him to be familiar with the approximate equivalent of a one-semester course in each of the following areas: linear algebra, general topology, complex analysis, and measure theory. Experience has taught us, however, that such a sequence of courses inevitably fails to treat certain topics that are important in the study of functional analysis and operator theory. For example, tensor products are frequently not discussed in a first course in linear algebra. Likewise for the topics of convergence of nets and the Baire category theorem in a course in topology, and the connections between measure and topology in a course in measure theory. For this reason we have chosen to devote the first ten chapters of this volume (entitled Part I) to topics of a preliminary nature. In other words, Part I summarizes in considerable detail what a student should (and eventually must) know in order to study functional analysis and operator theory successfully.

Almost Automorphic and Almost Periodic Functions in Abstract Spaces

DOWNLOAD NOW »

Author: Gaston M. N'Guérékata

Publisher: Springer Science & Business Media

ISBN: 9780306466861

Category: Mathematics

Page: 138

View: 4865

Almost Automorphic and Almost Periodic Functions in Abstract Spaces introduces and develops the theory of almost automorphic vector-valued functions in Bochner's sense and the study of almost periodic functions in a locally convex space in a homogenous and unified manner. It also applies the results obtained to study almost automorphic solutions of abstract differential equations, expanding the core topics with a plethora of groundbreaking new results and applications. For the sake of clarity, and to spare the reader unnecessary technical hurdles, the concepts are studied using classical methods of functional analysis.

Introduction to Tensor Products of Banach Spaces

DOWNLOAD NOW »

Author: Raymond A. Ryan

Publisher: Springer Science & Business Media

ISBN: 9781852334376

Category: Mathematics

Page: 226

View: 2964

This is the first ever truly introductory text to the theory of tensor products of Banach spaces. Coverage includes a full treatment of the Grothendieck theory of tensor norms, approximation property and the Radon-Nikodym Property, Bochner and Pettis integrals. Each chapter contains worked examples and a set of exercises, and two appendices offer material on summability in Banach spaces and properties of spaces of measures.

Functional Analysis

An Introduction to Banach Space Theory

DOWNLOAD NOW »

Author: Terry J. Morrison

Publisher: John Wiley & Sons

ISBN: 1118031245

Category: Mathematics

Page: 376

View: 9360

A powerful introduction to one of the most active areas oftheoretical and applied mathematics This distinctive introduction to one of the most far-reaching andbeautiful areas of mathematics focuses on Banach spaces as themilieu in which most of the fundamental concepts are presented.While occasionally using the more general topological vector spaceand locally convex space setting, it emphasizes the development ofthe reader's mathematical maturity and the ability to bothunderstand and "do" mathematics. In so doing, Functional Analysisprovides a strong springboard for further exploration on the widerange of topics the book presents, including: * Weak topologies and applications * Operators on Banach spaces * Bases in Banach spaces * Sequences, series, and geometry in Banach spaces Stressing the general techniques underlying the proofs, FunctionalAnalysis also features many exercises for immediate clarificationof points under discussion. This thoughtful, well-organizedsynthesis of the work of those mathematicians who created thediscipline of functional analysis as we know it today also providesa rich source of research topics and reference material.

Introduction to Operator Space Theory

DOWNLOAD NOW »

Author: Gilles Pisier

Publisher: Cambridge University Press

ISBN: 9780521811651

Category: Mathematics

Page: 478

View: 5544

An introduction to the theory of operator spaces, emphasising applications to C*-algebras.

A Course in Commutative Banach Algebras

DOWNLOAD NOW »

Author: Eberhard Kaniuth

Publisher: Springer Science & Business Media

ISBN: 0387724761

Category: Mathematics

Page: 353

View: 9169

Banach algebras are Banach spaces equipped with a continuous multipli- tion. In roughterms,there arethree types ofthem:algebrasofboundedlinear operators on Banach spaces with composition and the operator norm, al- bras consisting of bounded continuous functions on topological spaces with pointwise product and the uniform norm, and algebrasof integrable functions on locally compact groups with convolution as multiplication. These all play a key role in modern analysis. Much of operator theory is best approached from a Banach algebra point of view and many questions in complex analysis (such as approximation by polynomials or rational functions in speci?c - mains) are best understood within the framework of Banach algebras. Also, the study of a locally compact Abelian group is closely related to the study 1 of the group algebra L (G). There exist a rich literature and excellent texts on each single class of Banach algebras, notably on uniform algebras and on operator algebras. This work is intended as a textbook which provides a thorough introduction to the theory of commutative Banach algebras and stresses the applications to commutative harmonic analysis while also touching on uniform algebras. In this sense and purpose the book resembles Larsen’s classical text [75] which shares many themes and has been a valuable resource. However, for advanced graduate students and researchers I have covered several topics which have not been published in books before, including some journal articles.

Advanced Real Analysis

DOWNLOAD NOW »

Author: Anthony W. Knapp

Publisher: Springer Science & Business Media

ISBN: 9780817644420

Category: Mathematics

Page: 466

View: 7589

* Presents a comprehensive treatment with a global view of the subject * Rich in examples, problems with hints, and solutions, the book makes a welcome addition to the library of every mathematician

Elements of Operator Theory

DOWNLOAD NOW »

Author: Carlos S. Kubrusly

Publisher: Springer Science & Business Media

ISBN: 9780817641740

Category: Mathematics

Page: 527

View: 3632

{\it Elements of Operatory Theory} is aimed at graduate students as well as a new generation of mathematicians and scientists who need to apply operator theory to their field. Written in a user-friendly, motivating style, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, Hilbert spaces, culminating with the Spectral Theorem, one of the landmarks in the theory of operators on Hilbert spaces. The exposition is concept-driven and as much as possible avoids the formula-computational approach. Key features of this largely self-contained work include: * required background material to each chapter * fully rigorous proofs, over 300 of them, are specially tailored to the presentation and some are new * more than 100 examples and, in several cases, interesting counterexamples that demonstrate the frontiers of an important theorem * over 300 problems, many with hints * both problems and examples underscore further auxiliary results and extensions of the main theory; in this non-traditional framework, the reader is challenged and has a chance to prove the principal theorems anew This work is an excellent text for the classroom as well as a self-study resource for researchers. Prerequisites include an introduction to analysis and to functions of a complex variable, which most first-year graduate students in mathematics, engineering, or another formal science have already acquired. Measure theory and integration theory are required only for the last section of the final chapter.

Banach Algebra Techniques in Operator Theory

DOWNLOAD NOW »

Author: Ronald G. Douglas

Publisher: Springer Science & Business Media

ISBN: 1461216567

Category: Mathematics

Page: 198

View: 8296

A discussion of certain advanced topics in operator theory, providing the necessary background while assuming only standard senior-first year graduate courses in general topology, measure theory, and algebra. Each chapter ends with source notes which suggest additional reading along with comments on who proved what and when, followed by a large number of problems of varying difficulty. This new edition will appeal to a whole new generation of students seeking an introduction to this topic.

A Short Course on Banach Space Theory

DOWNLOAD NOW »

Author: N. L. Carothers

Publisher: Cambridge University Press

ISBN: 9780521603720

Category: Mathematics

Page: 184

View: 4736

This is a short course on Banach space theory with special emphasis on certain aspects of the classical theory. In particular, the course focuses on three major topics: the elementary theory of Schauder bases, an introduction to Lp spaces, and an introduction to C(K) spaces. While these topics can be traced back to Banach himself, our primary interest is in the postwar renaissance of Banach space theory brought about by James, Lindenstrauss, Mazur, Namioka, Pelczynski, and others. Their elegant and insightful results are useful in many contemporary research endeavors and deserve greater publicity. By way of prerequisites, the reader will need an elementary understanding of functional analysis and at least a passing familiarity with abstract measure theory. An introductory course in topology would also be helpful; however, the text includes a brief appendix on the topology needed for the course.

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators

DOWNLOAD NOW »

Author: Tailen Hsing,Randall Eubank

Publisher: John Wiley & Sons

ISBN: 1118762568

Category: Mathematics

Page: 368

View: 1484

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.

Algebraic Topology

A First Course

DOWNLOAD NOW »

Author: William Fulton

Publisher: Springer Science & Business Media

ISBN: 1461241804

Category: Mathematics

Page: 430

View: 7466

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups

Introduction to Modern Analysis

DOWNLOAD NOW »

Author: Shmuel Kantorovitz

Publisher: OUP Oxford

ISBN: 9780191523557

Category: Mathematics

Page: 448

View: 832

This text is based on lectures given by the author at the advanced undergraduate and graduate levels in Measure Theory, Functional Analysis, Banach Algebras, Spectral Theory (of bounded and unbounded operators), Semigroups of Operators, Probability and Mathematical Statistics, and Partial Differential Equations. The first 10 chapters discuss theoretical methods in Measure Theory and Functional Analysis, and contain over 120 end of chapter exercises. The final two chapters apply theory to applications in Probability Theory and Partial Differential Equations. The Measure Theory chapters discuss the Lebesgue-Radon-Nikodym theorem which is given the Von Neumann Hilbert space proof. Also included are the relatively advanced topics of Haar measure, differentiability of complex Borel measures in Euclidean space with respect to Lebesgue measure, and the Marcinkiewicz' interpolation theorem for operators between Lebesgue spaces. The Functional Analysis chapters cover the usual material on Banach spaces, weak topologies, separation, extremal points, the Stone-Weierstrass theorem, Hilbert spaces, Banach algebras, and Spectral Theory for both bounded and unbounded operators. Relatively advanced topics such as the Gelfand-Naimark-Segal representation theorem and the Von Neumann double commutant theorem are included. The final two chapters deal with applications, where the measure theory and functional analysis methods of the first ten chapters are applied to Probability Theory and the Theory of Distributions and PDE's. Again, some advanced topics are included, such as the Lyapounov Central Limit theorem, the Kolmogoroff "Three Series theorem", the Ehrenpreis-Malgrange-Hormander theorem on fundamental solutions, and Hormander's theory of convolution operators. The Oxford Graduate Texts in Mathematics series aim is to publish textbooks suitable for graduate students in mathematics and its applications. The level of books may range from some suitable for advanced undergraduate courses at one end, to others of interest to research workers. The emphasis is on texts of high mathematical quality in active areas, particularly areas that are not well represented in the literature at present.

Stochastic Analysis and Diffusion Processes

DOWNLOAD NOW »

Author: Gopinath Kallianpur,P Sundar

Publisher: Oxford University Press

ISBN: 0199657076

Category: Mathematics

Page: 352

View: 8135

Beginning with the concept of random processes and Brownian motion and building on the theory and research directions in a self-contained manner, this book provides an introduction to stochastic analysis for graduate students, researchers and applied scientists interested in stochastic processes and their applications.