An Introduction to 3D Computer Vision Techniques and Algorithms


Author: Boguslaw Cyganek,J. Paul Siebert

Publisher: John Wiley & Sons

ISBN: 1119964474

Category: Science

Page: 504

View: 6823

Computer vision encompasses the construction of integrated vision systems and the application of vision to problems of real-world importance. The process of creating 3D models is still rather difficult, requiring mechanical measurement of the camera positions or manual alignment of partial 3D views of a scene. However using algorithms, it is possible to take a collection of stereo-pair images of a scene and then automatically produce a photo-realistic, geometrically accurate digital 3D model. This book provides a comprehensive introduction to the methods, theories and algorithms of 3D computer vision. Almost every theoretical issue is underpinned with practical implementation or a working algorithm using pseudo-code and complete code written in C++ and MatLab®. There is the additional clarification of an accompanying website with downloadable software, case studies and exercises. Organised in three parts, Cyganek and Siebert give a brief history of vision research, and subsequently: present basic low-level image processing operations for image matching, including a separate chapter on image matching algorithms; explain scale-space vision, as well as space reconstruction and multiview integration; demonstrate a variety of practical applications for 3D surface imaging and analysis; provide concise appendices on topics such as the basics of projective geometry and tensor calculus for image processing, distortion and noise in images plus image warping procedures. An Introduction to 3D Computer Vision Algorithms and Techniques is a valuable reference for practitioners and programmers working in 3D computer vision, image processing and analysis as well as computer visualisation. It would also be of interest to advanced students and researchers in the fields of engineering, computer science, clinical photography, robotics, graphics and mathematics.

Object Detection and Recognition in Digital Images

Theory and Practice


Author: Boguslaw Cyganek

Publisher: John Wiley & Sons

ISBN: 111861836X

Category: Science

Page: 552

View: 2305

Object detection, tracking and recognition in images are key problems in computer vision. This book provides the reader with a balanced treatment between the theory and practice of selected methods in these areas to make the book accessible to a range of researchers, engineers, developers and postgraduate students working in computer vision and related fields. Key features: Explains the main theoretical ideas behind each method (which are augmented with a rigorous mathematical derivation of the formulas), their implementation (in C++) and demonstrated working in real applications. Places an emphasis on tensor and statistical based approaches within object detection and recognition. Provides an overview of image clustering and classification methods which includes subspace and kernel based processing, mean shift and Kalman filter, neural networks, and k-means methods. Contains numerous case study examples of mainly automotive applications. Includes a companion website hosting full C++ implementation, of topics presented in the book as a software library, and an accompanying manual to the software platform.

Computer Vision

Algorithms and Applications


Author: Richard Szeliski

Publisher: Springer Science & Business Media

ISBN: 9781848829350

Category: Computers

Page: 812

View: 5623

Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of “recipes,” this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques. Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

Concise Computer Vision

An Introduction into Theory and Algorithms


Author: Reinhard Klette

Publisher: Springer Science & Business Media

ISBN: 1447163206

Category: Computers

Page: 429

View: 5742

This textbook provides an accessible general introduction to the essential topics in computer vision. Classroom-tested programming exercises and review questions are also supplied at the end of each chapter. Features: provides an introduction to the basic notation and mathematical concepts for describing an image and the key concepts for mapping an image into an image; explains the topologic and geometric basics for analysing image regions and distributions of image values and discusses identifying patterns in an image; introduces optic flow for representing dense motion and various topics in sparse motion analysis; describes special approaches for image binarization and segmentation of still images or video frames; examines the basic components of a computer vision system; reviews different techniques for vision-based 3D shape reconstruction; includes a discussion of stereo matchers and the phase-congruency model for image features; presents an introduction into classification and learning.

Depth Map and 3D Imaging Applications: Algorithms and Technologies

Algorithms and Technologies


Author: Malik, Aamir Saeed

Publisher: IGI Global

ISBN: 161350327X

Category: Computers

Page: 648

View: 8324

Over the last decade, significant progress has been made in 3D imaging research. As a result, 3D imaging methods and techniques are being employed for various applications, including 3D television, intelligent robotics, medical imaging, and stereovision. Depth Map and 3D Imaging Applications: Algorithms and Technologies present various 3D algorithms developed in the recent years and to investigate the application of 3D methods in various domains. Containing five sections, this book offers perspectives on 3D imaging algorithms, 3D shape recovery, stereoscopic vision and autostereoscopic vision, 3D vision for robotic applications, and 3D imaging applications. This book is an important resource for professionals, scientists, researchers, academics, and software engineers in image/video processing and computer vision.

Computer Vision for X-Ray Testing

Imaging, Systems, Image Databases, and Algorithms


Author: Domingo Mery

Publisher: Springer

ISBN: 3319207474

Category: Computers

Page: 347

View: 3472

This accessible textbook presents an introduction to computer vision algorithms for industrially-relevant applications of X-ray testing. Features: introduces the mathematical background for monocular and multiple view geometry; describes the main techniques for image processing used in X-ray testing; presents a range of different representations for X-ray images, explaining how these enable new features to be extracted from the original image; examines a range of known X-ray image classifiers and classification strategies; discusses some basic concepts for the simulation of X-ray images and presents simple geometric and imaging models that can be used in the simulation; reviews a variety of applications for X-ray testing, from industrial inspection and baggage screening to the quality control of natural products; provides supporting material at an associated website, including a database of X-ray images and a Matlab toolbox for use with the book’s many examples.

Practical Guide to Machine Vision Software

An Introduction with LabVIEW


Author: Kye-Si Kwon,Steven Ready

Publisher: John Wiley & Sons

ISBN: 3527337563

Category: Computers

Page: 296

View: 5423

For both students and engineers in R&D, this book explains machine vision in a concise, hands-on way, using the Vision Development Module of the LabView software by National Instruments. Following a short introduction to the basics of machine vision and the technical procedures of image acquisition, the book goes on to guide readers in the use of the various software functions of LabView's machine vision module. It covers typical machine vision tasks, including particle analysis, edge detection, pattern and shape matching, dimension measurements as well as optical character recognition, enabling readers to quickly and efficiently use these functions for their own machine vision applications. A discussion of the concepts involved in programming the Vision Development Module rounds off the book, while example problems and exercises are included for training purposes as well as to further explain the concept of machine vision. With its step-by-step guide and clear structure, this is an essential reference for beginners and experienced researchers alike.

Computer Vision in Medical Imaging


Author: Chi-hau Chen

Publisher: World Scientific

ISBN: 981446094X

Category: Medical

Page: 412

View: 7796

The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and computer vision professionals to provide enhanced medical information by using computer vision techniques. The final objective is to benefit the patients without adding to the already high medical costs.

Programming Computer Vision with Python

Tools and algorithms for analyzing images


Author: Jan Erik Solem

Publisher: "O'Reilly Media, Inc."

ISBN: 1449341934

Category: Computers

Page: 264

View: 3217

If you want a basic understanding of computer vision’s underlying theory and algorithms, this hands-on introduction is the ideal place to start. You’ll learn techniques for object recognition, 3D reconstruction, stereo imaging, augmented reality, and other computer vision applications as you follow clear examples written in Python. Programming Computer Vision with Python explains computer vision in broad terms that won’t bog you down in theory. You get complete code samples with explanations on how to reproduce and build upon each example, along with exercises to help you apply what you’ve learned. This book is ideal for students, researchers, and enthusiasts with basic programming and standard mathematical skills. Learn techniques used in robot navigation, medical image analysis, and other computer vision applications Work with image mappings and transforms, such as texture warping and panorama creation Compute 3D reconstructions from several images of the same scene Organize images based on similarity or content, using clustering methods Build efficient image retrieval techniques to search for images based on visual content Use algorithms to classify image content and recognize objects Access the popular OpenCV library through a Python interface

Research Developments in Computer Vision and Image Processing: Methodologies and Applications

Methodologies and Applications


Author: Srivastava, Rajeev

Publisher: IGI Global

ISBN: 1466645598

Category: Computers

Page: 451

View: 9267

Similar to the way in which computer vision and computer graphics act as the dual fields that connect image processing in modern computer science, the field of image processing can be considered a crucial middle road between the vision and graphics fields. Research Developments in Computer Vision and Image Processing: Methodologies and Applications brings together various research methodologies and trends in emerging areas of application of computer vision and image processing. This book is useful for students, researchers, scientists, and engineers interested in the research developments of this rapidly growing field.

Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis

ECCV 2004 Workshops CVAMIA and MMBIA Prague, Czech Republic, May 15, 2004, Revised Selected Papers


Author: Milan Sonka,Ioannis A. Kakadiaris,Jan Kybic

Publisher: Springer Science & Business Media

ISBN: 3540226753

Category: Computers

Page: 444

View: 2152

Medical imaging and medical image analysisare rapidly developing. While m- ical imaging has already become a standard of modern medical care, medical image analysis is still mostly performed visually and qualitatively. The ev- increasing volume of acquired data makes it impossible to utilize them in full. Equally important, the visual approaches to medical image analysis are known to su?er from a lack of reproducibility. A signi?cant researche?ort is devoted to developing algorithms for processing the wealth of data available and extracting the relevant information in a computerized and quantitative fashion. Medical imaging and image analysis are interdisciplinary areas combining electrical, computer, and biomedical engineering; computer science; mathem- ics; physics; statistics; biology; medicine; and other ?elds. Medical imaging and computer vision, interestingly enough, have developed and continue developing somewhat independently. Nevertheless, bringing them together promises to b- e?t both of these ?elds. We were enthusiastic when the organizers of the 2004 European Conference on Computer Vision (ECCV) allowed us to organize a satellite workshop devoted to medical image analysis.

Markov Random Fields for Vision and Image Processing


Author: Andrew Blake,Pushmeet Kohli,Carsten Rother

Publisher: MIT Press

ISBN: 0262297442

Category: Computers

Page: 472

View: 8369

This volume demonstrates the power of the Markov random field (MRF) in vision, treating the MRF both as a tool for modeling image data and, utilizing recently developed algorithms, as a means of making inferences about images. These inferences concern underlying image and scene structure as well as solutions to such problems as image reconstruction, image segmentation, 3D vision, and object labeling. It offers key findings and state-of-the-art research on both algorithms and applications. After an introduction to the fundamental concepts used in MRFs, the book reviews some of the main algorithms for performing inference with MRFs; presents successful applications of MRFs, including segmentation, super-resolution, and image restoration, along with a comparison of various optimization methods; discusses advanced algorithmic topics; addresses limitations of the strong locality assumptions in the MRFs discussed in earlier chapters; and showcases applications that use MRFs in more complex ways, as components in bigger systems or with multiterm energy functions. The book will be an essential guide to current research on these powerful mathematical tools.

Guide to Computational Geometry Processing

Foundations, Algorithms, and Methods


Author: J. Andreas Bærentzen,Jens Gravesen,François Anton,Henrik Aanæs

Publisher: Springer Science & Business Media

ISBN: 1447140753

Category: Computers

Page: 326

View: 6837

This book reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. Features: presents an overview of the underlying mathematical theory, covering vector spaces, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations; reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces; examines techniques for computing curvature from polygonal meshes; describes algorithms for mesh smoothing, mesh parametrization, and mesh optimization and simplification; discusses point location databases and convex hulls of point sets; investigates the reconstruction of triangle meshes from point clouds, including methods for registration of point clouds and surface reconstruction; provides additional material at a supplementary website; includes self-study exercises throughout the text.

Guide to Three Dimensional Structure and Motion Factorization


Author: Guanghui Wang,Jonathan Wu

Publisher: Springer Science & Business Media

ISBN: 0857290460

Category: Computers

Page: 214

View: 5241

The problem of structure and motion recovery from image sequences is an important theme in computer vision. Considerable progress has been made in this field during the past two decades, resulting in successful applications in robot navigation, augmented reality, industrial inspection, medical image analysis, and digital entertainment, among other areas. However, many of these methods work only for rigid objects and static scenes. The study of non-rigid structure from motion is not only of academic significance, but also has important practical applications in real-world, nonrigid or dynamic scenarios, such as human facial expressions and moving vehicles. This practical guide/reference provides a comprehensive overview of Euclidean structure and motion recovery, with a specific focus on factorization-based algorithms. The book discusses the latest research in this field, including the extension of the factorization algorithm to recover the structure of non-rigid objects, and presents some new algorithms developed by the authors. Readers require no significant knowledge of computer vision, although some background on projective geometry and matrix computation would be beneficial. Topics and features: presents the first systematic study of structure and motion recovery of both rigid and non-rigid objects from images sequences; discusses in depth the theory, techniques, and applications of rigid and non-rigid factorization methods in three dimensional computer vision; examines numerous factorization algorithms, covering affine, perspective and quasi-perspective projection models; provides appendices describing the mathematical principles behind projective geometry, matrix decomposition, least squares, and nonlinear estimation techniques; includes chapter-ending review questions, and a glossary of terms used in the book. This unique text offers practical guidance in real applications and implementations of 3D modeling systems for practitioners in computer vision and pattern recognition, as well as serving as an invaluable source of new algorithms and methodologies for structure and motion recovery for graduate students and researchers.

Handbook of Mathematical Models in Computer Vision


Author: Nikos Paragios,Yunmei Chen,Olivier D. Faugeras

Publisher: Springer Science & Business Media

ISBN: 0387288317

Category: Computers

Page: 606

View: 7812

Abstract Biological vision is a rather fascinating domain of research. Scientists of various origins like biology, medicine, neurophysiology, engineering, math ematics, etc. aim to understand the processes leading to visual perception process and at reproducing such systems. Understanding the environment is most of the time done through visual perception which appears to be one of the most fundamental sensory abilities in humans and therefore a significant amount of research effort has been dedicated towards modelling and repro ducing human visual abilities. Mathematical methods play a central role in this endeavour. Introduction David Marr's theory v^as a pioneering step tov^ards understanding visual percep tion. In his view human vision was based on a complete surface reconstruction of the environment that was then used to address visual subtasks. This approach was proven to be insufficient by neuro-biologists and complementary ideas from statistical pattern recognition and artificial intelligence were introduced to bet ter address the visual perception problem. In this framework visual perception is represented by a set of actions and rules connecting these actions. The emerg ing concept of active vision consists of a selective visual perception paradigm that is basically equivalent to recovering from the environment the minimal piece information required to address a particular task of interest.

OpenCV 3 Computer Vision Application Programming Cookbook


Author: Robert Laganiere

Publisher: Packt Publishing Ltd

ISBN: 1786469111

Category: Computers

Page: 474

View: 5363

Recipes to help you build computer vision applications that make the most of the popular C++ library OpenCV 3 About This Book Written to the latest, gold-standard specification of OpenCV 3 Master OpenCV, the open source library of the computer vision community Master fundamental concepts in computer vision and image processing Learn about the important classes and functions of OpenCV with complete working examples applied to real images Who This Book Is For OpenCV 3 Computer Vision Application Programming Cookbook Third Edition is appropriate for novice C++ programmers who want to learn how to use the OpenCV library to build computer vision applications. It is also suitable for professional software developers who wish to be introduced to the concepts of computer vision programming. It can also be used as a companion book for university-level computer vision courses. It constitutes an excellent reference for graduate students and researchers in image processing and computer vision. What You Will Learn Install and create a program using the OpenCV library Process an image by manipulating its pixels Analyze an image using histograms Segment images into homogenous regions and extract meaningful objects Apply image filters to enhance image content Exploit the image geometry in order to relay different views of a pictured scene Calibrate the camera from different image observations Detect people and objects in images using machine learning techniques Reconstruct a 3D scene from images In Detail Making your applications see has never been easier with OpenCV. With it, you can teach your robot how to follow your cat, write a program to correctly identify the members of One Direction, or even help you find the right colors for your redecoration. OpenCV 3 Computer Vision Application Programming Cookbook Third Edition provides a complete introduction to the OpenCV library and explains how to build your first computer vision program. You will be presented with a variety of computer vision algorithms and exposed to important concepts in image and video analysis that will enable you to build your own computer vision applications. This book helps you to get started with the library, and shows you how to install and deploy the OpenCV library to write effective computer vision applications following good programming practices. You will learn how to read and write images and manipulate their pixels. Different techniques for image enhancement and shape analysis will be presented. You will learn how to detect specific image features such as lines, circles or corners. You will be introduced to the concepts of mathematical morphology and image filtering. The most recent methods for image matching and object recognition are described, and you'll discover how to process video from files or cameras, as well as how to detect and track moving objects. Techniques to achieve camera calibration and perform multiple-view analysis will also be explained. Finally, you'll also get acquainted with recent approaches in machine learning and object classification. Style and approach This book will arm you with the basics you need to start writing world-aware applications right from a pixel level all the way through to processing video sequences.

Grundkurs Künstliche Intelligenz

Eine praxisorientierte Einführung


Author: Wolfgang Ertel

Publisher: Springer-Verlag

ISBN: 3658135492

Category: Computers

Page: 385

View: 5765

Alle Teilgebiete der KI werden mit dieser Einführung kompakt, leicht verständlich und anwendungsbezogen dargestellt. Hier schreibt jemand, der das Gebiet nicht nur bestens kennt, sondern auch in der Lehre engagiert und erfolgreich vertritt. Von der klassischen Logik über das Schließen mit Unsicherheit und maschinelles Lernen bis hin zu Anwendungen wie Expertensysteme oder lernfähige Roboter. Neben dem umfassenden Einblick in dieses faszinierende Teilgebiet der Informatik gewinnen Sie vertiefte Kenntnisse, z. B. hinsichtlich wichtiger Verfahren zur Repräsentation und Verarbeitung von Wissen. Der Anwendungsbezug steht im Fokus der Darstellung. Viele Übungsaufgaben mit Lösungen sowie strukturierte Verweise auf Literatur und Ressourcen im Web ermöglichen ein effektives und kurzweiliges Selbststudium. Für die 3. Auflage ...

Energy Minimization Methods in Computer Vision and Pattern Recognition

Third International Workshop, EMMCVPR 2001, Sophia Antipolis France, September 3-5, 2001. Proceedings


Author: Mario Figueiredo,Josiane Zerubia,Anil K. Jain

Publisher: Springer Science & Business Media

ISBN: 3540425233

Category: Computers

Page: 652

View: 2637

This book constitutes the refereed proceedings of the Third International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2001, held in Sophia Antipolis, France in September 2001. The 42 revised full papers presented were carefully reviewed and selected from 70 submissions. The book offers topical sections on probabilistic models and estimation; image modeling and synthesis; clustering, grouping, and segmentation; optimization and graphs; and shapes, curves, surfaces, and templates.

Multiple View Geometry in Computer Vision


Author: Richard Hartley,Andrew Zisserman

Publisher: Cambridge University Press

ISBN: 1139449141

Category: Computers

Page: N.A

View: 7790

A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.