Algebra, Geometry and Software Systems

DOWNLOAD NOW »

Author: Michael Joswig,Nobuki Takayama

Publisher: Springer Science & Business Media

ISBN: 3662051486

Category: Mathematics

Page: 332

View: 6235

A collection of surveys and research papers on mathematical software and algorithms. The common thread is that the field of mathematical applications lies on the border between algebra and geometry. Topics include polyhedral geometry, elimination theory, algebraic surfaces, Gröbner bases, triangulations of point sets and the mutual relationship. This diversity is accompanied by the abundance of available software systems which often handle only special mathematical aspects. This is why the volume also focuses on solutions to the integration of mathematical software systems. This includes low-level and XML based high-level communication channels as well as general frameworks for modular systems.

Software for Algebraic Geometry

DOWNLOAD NOW »

Author: Michael E. Stillman,Nobuki Takayama,Jan Verschelde

Publisher: Springer Science & Business Media

ISBN: 0387781331

Category: Mathematics

Page: 176

View: 2181

Algorithms in algebraic geometry go hand in hand with software packages that implement them. Together they have established the modern field of computational algebraic geometry which has come to play a major role in both theoretical advances and applications. Over the past fifteen years, several excellent general purpose packages for computations in algebraic geometry have been developed, such as, CoCoA, Singular and Macaulay 2. While these packages evolve continuously, incorporating new mathematical advances, they both motivate and demand the creation of new mathematics and smarter algorithms. This volume reflects the workshop “Software for Algebraic Geometry” held in the week from 23 to 27 October 2006, as the second workshop in the thematic year on Applications of Algebraic Geometry at the IMA. The papers in this volume describe the software packages Bertini, PHClab, Gfan, DEMiCs, SYNAPS, TrIm, Gambit, ApaTools, and the application of Risa/Asir to a conjecture on multiple zeta values. They offer the reader a broad view of current trends in computational algebraic geometry through software development and applications.

Computations in Algebraic Geometry with Macaulay 2

DOWNLOAD NOW »

Author: David Eisenbud,Daniel R. Grayson,Mike Stillman,Bernd Sturmfels

Publisher: Springer Science & Business Media

ISBN: 3662048515

Category: Mathematics

Page: 329

View: 7162

This book presents algorithmic tools for algebraic geometry, with experimental applications. It also introduces Macaulay 2, a computer algebra system supporting research in algebraic geometry, commutative algebra, and their applications. The algorithmic tools presented here are designed to serve readers wishing to bring such tools to bear on their own problems. The first part of the book covers Macaulay 2 using concrete applications; the second emphasizes details of the mathematics.

Algorithms in Algebraic Geometry

DOWNLOAD NOW »

Author: Alicia Dickenstein,Frank-Olaf Schreyer,Andrew J. Sommese

Publisher: Springer Science & Business Media

ISBN: 9780387751559

Category: Mathematics

Page: 162

View: 8920

In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its Applications on September 2006 is one tangible indication of the interest. This volume of articles captures some of the spirit of the IMA workshop.

Methods of Algebraic Geometry in Control Theory: Part II

Multivariable Linear Systems and Projective Algebraic Geometry

DOWNLOAD NOW »

Author: Peter Falb

Publisher: Springer Science & Business Media

ISBN: 9780817641139

Category: Mathematics

Page: 390

View: 1679

"Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is quite satisfactory and natural for scalar systems, the study of multi-input, multi-output linear time invariant control systems requires projective algebraic geometry. Thus, this second volume deals with multi-variable linear systems and pro jective algebraic geometry. The results are deeper and less transparent, but are also quite essential to an understanding of linear control theory. A review of * From the Preface to Part 1. viii Preface the scalar theory is included along with a brief summary of affine algebraic geometry (Appendix E).

Geometric Algebra: An Algebraic System for Computer Games and Animation

DOWNLOAD NOW »

Author: John A. Vince

Publisher: Springer Science & Business Media

ISBN: 9781848823792

Category: Computers

Page: 195

View: 5568

Geometric algebra is still treated as an obscure branch of algebra and most books have been written by competent mathematicians in a very abstract style. This restricts the readership of such books especially by programmers working in computer graphics, who simply want guidance on algorithm design. Geometric algebra provides a unified algebraic system for solving a wide variety of geometric problems. John Vince reveals the beauty of this algebraic framework and communicates to the reader new and unusual mathematical concepts using colour illustrations, tabulations, and easy-to-follow algebraic proofs. The book includes many worked examples to show how the algebra works in practice and is essential reading for anyone involved in designing 3D geometric algorithms.

Geometric Algebra Computing

in Engineering and Computer Science

DOWNLOAD NOW »

Author: Eduardo Bayro Corrochano,Gerik Scheuermann

Publisher: Springer Science & Business Media

ISBN: 1849961085

Category: Computers

Page: 526

View: 7105

This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Its accessible style is enhanced by examples, figures and experimental analysis.

Geometric Algebra for Computer Science

An Object-Oriented Approach to Geometry

DOWNLOAD NOW »

Author: Leo Dorst,Daniel Fontijne,Stephen Mann

Publisher: Elsevier

ISBN: 0080553109

Category: Computers

Page: 664

View: 2547

Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA

Topics in Algebraic Geometry and Geometric Modeling

Workshop on Algebraic Geometry and Geometric Modeling, July 29-August 2, 2002, Vilnius University, Lithuania

DOWNLOAD NOW »

Author: Ron Goldman,Rimvydas Krasauskas

Publisher: American Mathematical Soc.

ISBN: 0821834207

Category: Mathematics

Page: 366

View: 9840

Algebraic geometry and geometric modeling both deal with curves and surfaces generated by polynomial equations. Algebraic geometry investigates the theoretical properties of polynomial curves and surfaces; geometric modeling uses polynomial, piecewise polynomial, and rational curves and surfaces to build computer models of mechanical components and assemblies for industrial design and manufacture. The NSF sponsored the four-day ``Vilnius Workshop on Algebraic Geometry and Geometric Modeling'', which brought together some of the top experts in the two research communities to examine a wide range of topics of interest to both fields. This volume is an outgrowth of that workshop. Included are surveys, tutorials, and research papers. In addition, the editors have included a translation of Minding's 1841 paper, ``On the determination of the degree of an equation obtained by elimination'', which foreshadows the modern application of mixed volumes in algebraic geometry. The volume is suitable for mathematicians, computer scientists, and engineers interested in applications of algebraic geometry to geometric modeling.

Software for Algebraic Geometry

DOWNLOAD NOW »

Author: Kurt Weichselberger,Sigrid Pöhlmann

Publisher: Springer

ISBN: N.A

Category: Computers

Page: 132

View: 1718

This volume reflects the workshop "Software for Algebraic Geometry" held in the week from 23 to 27 October 2006, as the second workshop in the thematic year on Applications of Algebraic Geometry at the IMA.

Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory

DOWNLOAD NOW »

Author: Gebhard Böckle,Wolfram Decker,Gunter Malle

Publisher: Springer

ISBN: 3319705660

Category: Mathematics

Page: 763

View: 6781

This book presents state-of-the-art research and survey articles that highlight work done within the Priority Program SPP 1489 “Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory”, which was established and generously supported by the German Research Foundation (DFG) from 2010 to 2016. The goal of the program was to substantially advance algorithmic and experimental methods in the aforementioned disciplines, to combine the different methods where necessary, and to apply them to central questions in theory and practice. Of particular concern was the further development of freely available open source computer algebra systems and their interaction in order to create powerful new computational tools that transcend the boundaries of the individual disciplines involved. The book covers a broad range of topics addressing the design and theoretical foundations, implementation and the successful application of algebraic algorithms in order to solve mathematical research problems. It offers a valuable resource for all researchers, from graduate students through established experts, who are interested in the computational aspects of algebra, geometry, and/or number theory.

Geometric Computing for Perception Action Systems

Concepts, Algorithms, and Scientific Applications

DOWNLOAD NOW »

Author: Eduardo Bayro Corrochano

Publisher: Springer Science & Business Media

ISBN: 1461301777

Category: Computers

Page: 235

View: 1651

After an introduction to geometric algebra, and the necessary math concepts that are needed, the book examines a variety of applications in the field of cognitive systems using geometric algebra as the mathematical system. There is strong evidence that geobetric albegra can be used to carry out efficient computations at all levels in the cognitive system. Geometric algebra reduces the complexity of algebraic expressions and as a result, it improves algorithms both in speed and accuracy. The book is addressed to a broad audience of computer scientists, cyberneticists, and engineers. It contains computer programs to clarify and demonstrate the importance of geometric algebra in cognitive systems.

Mathematical Tools for Physicists

DOWNLOAD NOW »

Author: Michael Grinfeld

Publisher: John Wiley & Sons

ISBN: 3527684271

Category: Science

Page: 632

View: 824

The new edition is significantly updated and expanded. This unique collection of review articles, ranging from fundamental concepts up to latest applications, contains individual contributions written by renowned experts in the relevant fields. Much attention is paid to ensuring fast access to the information, with each carefully reviewed article featuring cross-referencing, references to the most relevant publications in the field, and suggestions for further reading, both introductory as well as more specialized. While the chapters on group theory, integral transforms, Monte Carlo methods, numerical analysis, perturbation theory, and special functions are thoroughly rewritten, completely new content includes sections on commutative algebra, computational algebraic topology, differential geometry, dynamical systems, functional analysis, graph and network theory, PDEs of mathematical physics, probability theory, stochastic differential equations, and variational methods.

Algebraic Geometry and Statistical Learning Theory

DOWNLOAD NOW »

Author: Sumio Watanabe

Publisher: Cambridge University Press

ISBN: 0521864674

Category: Computers

Page: 286

View: 6430

Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.

Algebra, Geometry, and Physics in the 21st Century

Kontsevich Festschrift

DOWNLOAD NOW »

Author: Denis Auroux,Ludmil Katzarkov,Tony Pantev,Yan Soibelman,Yuri Tschinkel

Publisher: Birkhäuser

ISBN: 3319599399

Category: Mathematics

Page: 358

View: 9912

This volume is a tribute to Maxim Kontsevich, one of the most original and influential mathematicians of our time. Maxim’s vision has inspired major developments in many areas of mathematics, ranging all the way from probability theory to motives over finite fields, and has brought forth a paradigm shift at the interface of modern geometry and mathematical physics. Many of his papers have opened completely new directions of research and led to the solutions of many classical problems. This book collects papers by leading experts currently engaged in research on topics close to Maxim’s heart. Contributors: S. Donaldson A. Goncharov D. Kaledin M. Kapranov A. Kapustin L. Katzarkov A. Noll P. Pandit S. Pimenov J. Ren P. Seidel C. Simpson Y. Soibelman R. Thorngren

Geometric Algebra: An Algebraic System for Computer Games and Animation

DOWNLOAD NOW »

Author: John A. Vince

Publisher: Springer Science & Business Media

ISBN: 9781848823792

Category: Computers

Page: 195

View: 7798

Geometric algebra is still treated as an obscure branch of algebra and most books have been written by competent mathematicians in a very abstract style. This restricts the readership of such books especially by programmers working in computer graphics, who simply want guidance on algorithm design. Geometric algebra provides a unified algebraic system for solving a wide variety of geometric problems. John Vince reveals the beauty of this algebraic framework and communicates to the reader new and unusual mathematical concepts using colour illustrations, tabulations, and easy-to-follow algebraic proofs. The book includes many worked examples to show how the algebra works in practice and is essential reading for anyone involved in designing 3D geometric algorithms.

Interactions of Classical and Numerical Algebraic Geometry

A Conference in Honor of Andrew Sommese : Interactions of Classical and Numerical Algebraic Geometry, May 22-24, 2008, University of Notre Dame, Notre Dame, Indiana

DOWNLOAD NOW »

Author: Daniel James Bates

Publisher: American Mathematical Soc.

ISBN: 0821847465

Category: Mathematics

Page: 362

View: 2387

This volume contains the proceedings of the conference on Interactions of Classical and Numerical Algebraic Geometry, held May 22-24, 2008, at the University of Notre Dame, in honor of the achievements of Professor Andrew J. Sommese. While classical algebraic geometry has been studied for hundreds of years, numerical algebraic geometry has only recently been developed. Due in large part to the work of Andrew Sommese and his collaborators, the intersection of these two fields is now ripe for rapid advancement. The primary goal of both the conference and this volume is to foster the interaction between researchers interested in classical algebraic geometry and those interested in numerical methods. The topics in this book include (but are not limited to) various new results in complex algebraic geometry, a primer on Seshadri constants, analyses and presentations of existing and novel numerical homotopy methods for solving polynomial systems, a numerical method for computing the dimensions of the cohomology of twists of ideal sheaves, and the application of algebraic methods in kinematics and phylogenetics.

Algebraic Geometry for Scientists and Engineers

DOWNLOAD NOW »

Author: Shreeram Shankar Abhyankar

Publisher: American Mathematical Soc.

ISBN: 0821815350

Category: Mathematics

Page: 295

View: 1491

This book, based on lectures presented in courses on algebraic geometry taught by the author at Purdue University, is intended for engineers and scientists (especially computer scientists), as well as graduate students and advanced undergraduates in mathematics. In addition to providing a concrete or algorithmic approach to algebraic geometry, the author also attempts to motivate and explain its link to more modern algebraic geometry based on abstract algebra.The book covers various topics in the theory of algebraic curves and surfaces, such as rational and polynomial parametrization, functions and differentials on a curve, branches and valuations, and resolution of singularities. The emphasis is on presenting heuristic ideas and suggestive arguments rather than formal proofs. Readers will gain new insight into the subject of algebraic geometry in a way that should increase appreciation of modern treatments of the subject, as well as enhance its utility in applications in science and industry.

Computations in Algebraic Geometry with Macaulay 2

DOWNLOAD NOW »

Author: David Eisenbud

Publisher: Springer Science & Business Media

ISBN: 9783540422303

Category: Computers

Page: 329

View: 9906

This book presents algorithmic tools for algebraic geometry and experimental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. These expositions will be valuable to both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all. The first part of the book is primarily concerned with introducing Macaulay2, whereas the second part emphasizes the mathematics.

Connections Between Algebra, Combinatorics, and Geometry

DOWNLOAD NOW »

Author: Susan M. Cooper,Sean Sather-Wagstaff

Publisher: Springer

ISBN: 1493906267

Category: Mathematics

Page: 317

View: 3170

Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resource for graduate students and researchers who wish to expand their knowledge of commutative algebra, algebraic geometry, combinatorics, and the intricacies of their intersection.