Advanced Machine Learning with Python

DOWNLOAD NOW »

Author: John Hearty

Publisher: Packt Publishing Ltd

ISBN: 1784393835

Category: Computers

Page: 278

View: 3573

Solve challenging data science problems by mastering cutting-edge machine learning techniques in Python About This Book Resolve complex machine learning problems and explore deep learning Learn to use Python code for implementing a range of machine learning algorithms and techniques A practical tutorial that tackles real-world computing problems through a rigorous and effective approach Who This Book Is For This title is for Python developers and analysts or data scientists who are looking to add to their existing skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution, or of entering a Kaggle contest for instance, this book is for you! Prior experience of Python and grounding in some of the core concepts of machine learning would be helpful. What You Will Learn Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms Apply your new found skills to solve real problems, through clearly-explained code for every technique and test Automate large sets of complex data and overcome time-consuming practical challenges Improve the accuracy of models and your existing input data using powerful feature engineering techniques Use multiple learning techniques together to improve the consistency of results Understand the hidden structure of datasets using a range of unsupervised techniques Gain insight into how the experts solve challenging data problems with an effective, iterative, and validation-focused approach Improve the effectiveness of your deep learning models further by using powerful ensembling techniques to strap multiple models together In Detail Designed to take you on a guided tour of the most relevant and powerful machine learning techniques in use today by top data scientists, this book is just what you need to push your Python algorithms to maximum potential. Clear examples and detailed code samples demonstrate deep learning techniques, semi-supervised learning, and more - all whilst working with real-world applications that include image, music, text, and financial data. The machine learning techniques covered in this book are at the forefront of commercial practice. They are applicable now for the first time in contexts such as image recognition, NLP and web search, computational creativity, and commercial/financial data modeling. Deep Learning algorithms and ensembles of models are in use by data scientists at top tech and digital companies, but the skills needed to apply them successfully, while in high demand, are still scarce. This book is designed to take the reader on a guided tour of the most relevant and powerful machine learning techniques. Clear descriptions of how techniques work and detailed code examples demonstrate deep learning techniques, semi-supervised learning and more, in real world applications. We will also learn about NumPy and Theano. By this end of this book, you will learn a set of advanced Machine Learning techniques and acquire a broad set of powerful skills in the area of feature selection & feature engineering. Style and approach This book focuses on clarifying the theory and code behind complex algorithms to make them practical, useable, and well-understood. Each topic is described with real-world applications, providing both broad contextual coverage and detailed guidance.

Hands-On Transfer Learning with Python

Implement advanced deep learning and neural network models using TensorFlow and Keras

DOWNLOAD NOW »

Author: Dipanjan Sarkar,Raghav Bali,Tamoghna Ghosh

Publisher: Packt Publishing Ltd

ISBN: 1788839056

Category: Computers

Page: 438

View: 2349

Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem Key Features Build deep learning models with transfer learning principles in Python implement transfer learning to solve real-world research problems Perform complex operations such as image captioning neural style transfer Book Description Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems. What you will learn Set up your own DL environment with graphics processing unit (GPU) and Cloud support Delve into transfer learning principles with ML and DL models Explore various DL architectures, including CNN, LSTM, and capsule networks Learn about data and network representation and loss functions Get to grips with models and strategies in transfer learning Walk through potential challenges in building complex transfer learning models from scratch Explore real-world research problems related to computer vision and audio analysis Understand how transfer learning can be leveraged in NLP Who this book is for Hands-On Transfer Learning with Python is for data scientists, machine learning engineers, analysts and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems. Basic proficiency in machine learning and Python is required.

Advanced Data Analytics Using Python

With Machine Learning, Deep Learning and NLP Examples

DOWNLOAD NOW »

Author: Sayan Mukhopadhyay

Publisher: Apress

ISBN: 1484234502

Category: Computers

Page: 186

View: 9719

Gain a broad foundation of advanced data analytics concepts and discover the recent revolution in databases such as Neo4j, Elasticsearch, and MongoDB. This book discusses how to implement ETL techniques including topical crawling, which is applied in domains such as high-frequency algorithmic trading and goal-oriented dialog systems. You’ll also see examples of machine learning concepts such as semi-supervised learning, deep learning, and NLP. Advanced Data Analytics Using Python also covers important traditional data analysis techniques such as time series and principal component analysis. After reading this book you will have experience of every technical aspect of an analytics project. You’ll get to know the concepts using Python code, giving you samples to use in your own projects. What You Will Learn Work with data analysis techniques such as classification, clustering, regression, and forecasting Handle structured and unstructured data, ETL techniques, and different kinds of databases such as Neo4j, Elasticsearch, MongoDB, and MySQL Examine the different big data frameworks, including Hadoop and Spark Discover advanced machine learning concepts such as semi-supervised learning, deep learning, and NLP Who This Book Is For Data scientists and software developers interested in the field of data analytics.

Python: Advanced Guide to Artificial Intelligence

Expert machine learning systems and intelligent agents using Python

DOWNLOAD NOW »

Author: Giuseppe Bonaccorso,Armando Fandango,Rajalingappaa Shanmugamani

Publisher: Packt Publishing Ltd

ISBN: 1789951720

Category: Computers

Page: 764

View: 6564

Demystify the complexity of machine learning techniques and create evolving, clever solutions to solve your problems Key Features Master supervised, unsupervised, and semi-supervised ML algorithms and their implementation Build deep learning models for object detection, image classification, similarity learning, and more Build, deploy, and scale end-to-end deep neural network models in a production environment Book Description This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: Mastering Machine Learning Algorithms by Giuseppe Bonaccorso Mastering TensorFlow 1.x by Armando Fandango Deep Learning for Computer Vision by Rajalingappaa Shanmugamani What you will learn Explore how an ML model can be trained, optimized, and evaluated Work with Autoencoders and Generative Adversarial Networks Explore the most important Reinforcement Learning techniques Build end-to-end deep learning (CNN, RNN, and Autoencoders) models Who this book is for This Learning Path is for data scientists, machine learning engineers, artificial intelligence engineers who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. You will encounter the advanced intricacies and complex use cases of deep learning and AI. A basic knowledge of programming in Python and some understanding of machine learning concepts are required to get the best out of this Learning Path.

Python: Real World Machine Learning

DOWNLOAD NOW »

Author: Prateek Joshi,John Hearty,Bastiaan Sjardin,Luca Massaron,Alberto Boschetti

Publisher: Packt Publishing Ltd

ISBN: 1787120678

Category: Computers

Page: 941

View: 7039

Learn to solve challenging data science problems by building powerful machine learning models using Python About This Book Understand which algorithms to use in a given context with the help of this exciting recipe-based guide This practical tutorial tackles real-world computing problems through a rigorous and effective approach Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This Learning Path is for Python programmers who are looking to use machine learning algorithms to create real-world applications. It is ideal for Python professionals who want to work with large and complex datasets and Python developers and analysts or data scientists who are looking to add to their existing skills by accessing some of the most powerful recent trends in data science. Experience with Python, Jupyter Notebooks, and command-line execution together with a good level of mathematical knowledge to understand the concepts is expected. Machine learning basic knowledge is also expected. What You Will Learn Use predictive modeling and apply it to real-world problems Understand how to perform market segmentation using unsupervised learning Apply your new-found skills to solve real problems, through clearly-explained code for every technique and test Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms Increase predictive accuracy with deep learning and scalable data-handling techniques Work with modern state-of-the-art large-scale machine learning techniques Learn to use Python code to implement a range of machine learning algorithms and techniques In Detail Machine learning is increasingly spreading in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. Machine learning is transforming the way we understand and interact with the world around us. In the first module, Python Machine Learning Cookbook, you will learn how to perform various machine learning tasks using a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. The second module, Advanced Machine Learning with Python, is designed to take you on a guided tour of the most relevant and powerful machine learning techniques and you'll acquire a broad set of powerful skills in the area of feature selection and feature engineering. The third module in this learning path, Large Scale Machine Learning with Python, dives into scalable machine learning and the three forms of scalability. It covers the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. This Learning Path will teach you Python machine learning for the real world. The machine learning techniques covered in this Learning Path are at the forefront of commercial practice. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Python Machine Learning Cookbook by Prateek Joshi Advanced Machine Learning with Python by John Hearty Large Scale Machine Learning with Python by Bastiaan Sjardin, Alberto Boschetti, Luca Massaron Style and approach This course is a smooth learning path that will teach you how to get started with Python machine learning for the real world, and develop solutions to real-world problems. Through this comprehensive course, you'll learn to create the most effective machine learning techniques from scratch and more!

Next-Generation Wireless Networks Meet Advanced Machine Learning Applications

DOWNLOAD NOW »

Author: Com?a, Ioan-Sorin,Trestian, Ramona

Publisher: IGI Global

ISBN: 152257459X

Category: Technology & Engineering

Page: 356

View: 4697

The ever-evolving wireless technology industry is demanding new technologies and standards to ensure a higher quality of experience for global end-users. This developing challenge has enabled researchers to identify the present trend of machine learning as a possible solution, but will it meet business velocity demand? Next-Generation Wireless Networks Meet Advanced Machine Learning Applications is a pivotal reference source that provides emerging trends and insights into various technologies of next-generation wireless networks to enable the dynamic optimization of system configuration and applications within the fields of wireless networks, broadband networks, and wireless communication. Featuring coverage on a broad range of topics such as machine learning, hybrid network environments, wireless communications, and the internet of things; this publication is ideally designed for industry experts, researchers, students, academicians, and practitioners seeking current research on various technologies of next-generation wireless networks.

Neuronale Netze selbst programmieren

Ein verständlicher Einstieg mit Python

DOWNLOAD NOW »

Author: Tariq Rashid

Publisher: O'Reilly

ISBN: 3960101031

Category: Computers

Page: 232

View: 6911

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Statistik-Workshop für Programmierer

DOWNLOAD NOW »

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 6183

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Python: Deeper Insights into Machine Learning

DOWNLOAD NOW »

Author: Sebastian Raschka,David Julian,John Hearty

Publisher: Packt Publishing Ltd

ISBN: 1787128547

Category: Computers

Page: 901

View: 4279

Leverage benefits of machine learning techniques using Python About This Book Improve and optimise machine learning systems using effective strategies. Develop a strategy to deal with a large amount of data. Use of Python code for implementing a range of machine learning algorithms and techniques. Who This Book Is For This title is for data scientist and researchers who are already into the field of data science and want to see machine learning in action and explore its real-world application. Prior knowledge of Python programming and mathematics is must with basic knowledge of machine learning concepts. What You Will Learn Learn to write clean and elegant Python code that will optimize the strength of your algorithms Uncover hidden patterns and structures in data with clustering Improve accuracy and consistency of results using powerful feature engineering techniques Gain practical and theoretical understanding of cutting-edge deep learning algorithms Solve unique tasks by building models Get grips on the machine learning design process In Detail Machine learning and predictive analytics are becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. It is one of the fastest growing trends in modern computing, and everyone wants to get into the field of machine learning. In order to obtain sufficient recognition in this field, one must be able to understand and design a machine learning system that serves the needs of a project. The idea is to prepare a learning path that will help you to tackle the real-world complexities of modern machine learning with innovative and cutting-edge techniques. Also, it will give you a solid foundation in the machine learning design process, and enable you to build customized machine learning models to solve unique problems. The course begins with getting your Python fundamentals nailed down. It focuses on answering the right questions that cove a wide range of powerful Python libraries, including scikit-learn Theano and Keras.After getting familiar with Python core concepts, it's time to dive into the field of data science. You will further gain a solid foundation on the machine learning design and also learn to customize models for solving problems. At a later stage, you will get a grip on more advanced techniques and acquire a broad set of powerful skills in the area of feature selection and feature engineering. Style and approach This course includes all the resources that will help you jump into the data science field with Python. The aim is to walk through the elements of Python covering powerful machine learning libraries. This course will explain important machine learning models in a step-by-step manner. Each topic is well explained with real-world applications with detailed guidance.Through this comprehensive guide, you will be able to explore machine learning techniques.

Mastering TensorFlow 1.x

Advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras

DOWNLOAD NOW »

Author: Armando Fandango

Publisher: Packt Publishing Ltd

ISBN: 1788297008

Category: Computers

Page: 474

View: 3935

Build, scale, and deploy deep neural network models using the star libraries in Python Key Features Delve into advanced machine learning and deep learning use cases using Tensorflow and Keras Build, deploy, and scale end-to-end deep neural network models in a production environment Learn to deploy TensorFlow on mobile, and distributed TensorFlow on GPU, Clusters, and Kubernetes Book Description TensorFlow is the most popular numerical computation library built from the ground up for distributed, cloud, and mobile environments. TensorFlow represents the data as tensors and the computation as graphs. This book is a comprehensive guide that lets you explore the advanced features of TensorFlow 1.x. Gain insight into TensorFlow Core, Keras, TF Estimators, TFLearn, TF Slim, Pretty Tensor, and Sonnet. Leverage the power of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Throughout the book, you will obtain hands-on experience with varied datasets, such as MNIST, CIFAR-10, PTB, text8, and COCO-Images. You will learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF Clusters, deploy production models with TensorFlow Serving, and build and deploy TensorFlow models for mobile and embedded devices on Android and iOS platforms. You will see how to call TensorFlow and Keras API within the R statistical software, and learn the required techniques for debugging when the TensorFlow API-based code does not work as expected. The book helps you obtain in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems. By the end of this guide, you will have mastered the offerings of TensorFlow and Keras, and gained the skills you need to build smarter, faster, and efficient machine learning and deep learning systems. What you will learn Master advanced concepts of deep learning such as transfer learning, reinforcement learning, generative models and more, using TensorFlow and Keras Perform supervised (classification and regression) and unsupervised (clustering) learning to solve machine learning tasks Build end-to-end deep learning (CNN, RNN, and Autoencoders) models with TensorFlow Scale and deploy production models with distributed and high-performance computing on GPU and clusters Build TensorFlow models to work with multilayer perceptrons using Keras, TFLearn, and R Learn the functionalities of smart apps by building and deploying TensorFlow models on iOS and Android devices Supercharge TensorFlow with distributed training and deployment on Kubernetes and TensorFlow Clusters Who this book is for This book is for data scientists, machine learning engineers, artificial intelligence engineers, and for all TensorFlow users who wish to upgrade their TensorFlow knowledge and work on various machine learning and deep learning problems. If you are looking for an easy-to-follow guide that underlines the intricacies and complex use cases of machine learning, you will find this book extremely useful. Some basic understanding of TensorFlow is required to get the most out of the book.

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

DOWNLOAD NOW »

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 1009

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Einführung in Machine Learning mit Python

Praxiswissen Data Science

DOWNLOAD NOW »

Author: Andreas C. Müller,Sarah Guido

Publisher: O'Reilly

ISBN: 3960101120

Category: Computers

Page: 378

View: 2158

Machine Learning ist zu einem wichtigen Bestandteil vieler kommerzieller Anwendungen und Forschungsprojekte geworden, von der medizinischen Diagnostik bis hin zur Suche nach Freunden in sozialen Netzwerken. Um Machine-Learning-Anwendungen zu entwickeln, braucht es keine großen Expertenteams: Wenn Sie Python-Grundkenntnisse mitbringen, zeigt Ihnen dieses Praxisbuch, wie Sie Ihre eigenen Machine-Learning-Lösungen erstellen. Mit Python und der scikit-learn-Bibliothek erarbeiten Sie sich alle Schritte, die für eine erfolgreiche Machine-Learning-Anwendung notwendig sind. Die Autoren Andreas Müller und Sarah Guido konzentrieren sich bei der Verwendung von Machine-Learning-Algorithmen auf die praktischen Aspekte statt auf die Mathematik dahinter. Wenn Sie zusätzlich mit den Bibliotheken NumPy und matplotlib vertraut sind, hilft Ihnen dies, noch mehr aus diesem Tutorial herauszuholen. Das Buch zeigt Ihnen: - grundlegende Konzepte und Anwendungen von Machine Learning - Vor- und Nachteile weit verbreiteter maschineller Lernalgorithmen - wie sich die von Machine Learning verarbeiteten Daten repräsentieren lassen und auf welche Aspekte der Daten Sie sich konzentrieren sollten - fortgeschrittene Methoden zur Auswertung von Modellen und zum Optimieren von Parametern - das Konzept von Pipelines, mit denen Modelle verkettet und Arbeitsabläufe gekapselt werden - Arbeitsmethoden für Textdaten, insbesondere textspezifische Verarbeitungstechniken - Möglichkeiten zur Verbesserung Ihrer Fähigkeiten in den Bereichen Machine Learning und Data Science Dieses Buch ist eine fantastische, super praktische Informationsquelle für jeden, der mit Machine Learning in Python starten möchte – ich wünschte nur, es hätte schon existiert, als ich mit scikit-learn anfing! Hanna Wallach, Senior Researcher, Microsoft Research

Einführung in Machine Learning mit Python

Praxiswissen Data Science

DOWNLOAD NOW »

Author: Andreas C. Müller,Sarah Guido

Publisher: O'Reilly

ISBN: 3960101120

Category: Computers

Page: 378

View: 1296

Machine Learning ist zu einem wichtigen Bestandteil vieler kommerzieller Anwendungen und Forschungsprojekte geworden, von der medizinischen Diagnostik bis hin zur Suche nach Freunden in sozialen Netzwerken. Um Machine-Learning-Anwendungen zu entwickeln, braucht es keine großen Expertenteams: Wenn Sie Python-Grundkenntnisse mitbringen, zeigt Ihnen dieses Praxisbuch, wie Sie Ihre eigenen Machine-Learning-Lösungen erstellen. Mit Python und der scikit-learn-Bibliothek erarbeiten Sie sich alle Schritte, die für eine erfolgreiche Machine-Learning-Anwendung notwendig sind. Die Autoren Andreas Müller und Sarah Guido konzentrieren sich bei der Verwendung von Machine-Learning-Algorithmen auf die praktischen Aspekte statt auf die Mathematik dahinter. Wenn Sie zusätzlich mit den Bibliotheken NumPy und matplotlib vertraut sind, hilft Ihnen dies, noch mehr aus diesem Tutorial herauszuholen. Das Buch zeigt Ihnen: - grundlegende Konzepte und Anwendungen von Machine Learning - Vor- und Nachteile weit verbreiteter maschineller Lernalgorithmen - wie sich die von Machine Learning verarbeiteten Daten repräsentieren lassen und auf welche Aspekte der Daten Sie sich konzentrieren sollten - fortgeschrittene Methoden zur Auswertung von Modellen und zum Optimieren von Parametern - das Konzept von Pipelines, mit denen Modelle verkettet und Arbeitsabläufe gekapselt werden - Arbeitsmethoden für Textdaten, insbesondere textspezifische Verarbeitungstechniken - Möglichkeiten zur Verbesserung Ihrer Fähigkeiten in den Bereichen Machine Learning und Data Science Dieses Buch ist eine fantastische, super praktische Informationsquelle für jeden, der mit Machine Learning in Python starten möchte – ich wünschte nur, es hätte schon existiert, als ich mit scikit-learn anfing! Hanna Wallach, Senior Researcher, Microsoft Research

Python von Kopf bis Fuß

Aktuell zu Python 3

DOWNLOAD NOW »

Author: Paul Barry

Publisher: O'Reilly

ISBN: 3960101368

Category: Computers

Page: 620

View: 5980

Was lernen Sie in diesem Buch? Haben Sie sich schon einmal gewünscht, Sie könnten mit nur einem Buch Python richtig lernen? Mit Python von Kopf bis Fuß schaffen Sie es! Durch die ausgefeilte Von-Kopf-bis-Fuß-Didaktik, die viel mehr als die bloße Syntax und typische How-to-Erklärungen bietet, wird es sogar zum Vergnügen. Python-Grundlagen wie Datenstrukturen und Funktionen verstehen Sie hier schnell, und dann geht es auch schon weiter: Sie programmieren Ihre eigene Web-App, erkunden Datenbank-Management, Ausnahmebehandlung und die Verarbeitung von Daten. Da Python häufig im Data-Science-Umfeld eingesetzt wird, haben in der 2. Auflage diejenigen Techniken ein stärkeres Gewicht bekommen, die in der Welt der Big Data genutzt werden. Wieso sieht dieses Buch so anders aus? In diesem Buch sind die neuesten Erkenntnisse der Kognitionswissenschaft und der Lerntheorie eingeflossen, um Ihnen das Lernen so einfach wie möglich zu machen. Statt einschläfernder Bleiwüsten verwendet dieses Buch eine Vielzahl von Abbildungen und Textstilen, die Ihnen das Wissen direkt ins Hirn spielen – und zwar so, dass es sitzt.

Deep Learning mit Python und Keras

Das Praxis-Handbuch vom Entwickler der Keras-Bibliothek

DOWNLOAD NOW »

Author: Chollet, François

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958458408

Category: Computers

Page: 447

View: 9172

Einführung in Python

DOWNLOAD NOW »

Author: Mark Lutz,David Ascher,Dinu C. Gherman

Publisher: O'Reilly Germany

ISBN: 3897214881

Category: Python (Computer program language)

Page: 624

View: 8579

Data Science mit Python

Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn

DOWNLOAD NOW »

Author: Jake VanderPlas

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958456979

Category: Computers

Page: 552

View: 5713

Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts

Practical Convolutional Neural Networks

Implement advanced deep learning models using Python

DOWNLOAD NOW »

Author: Mohit Sewak,Md. Rezaul Karim,Pradeep Pujari

Publisher: Packt Publishing Ltd

ISBN: 1788394143

Category: Computers

Page: 218

View: 8292

One stop guide to implementing award-winning, and cutting-edge CNN architectures Key Features Fast-paced guide with use cases and real-world examples to get well versed with CNN techniques Implement CNN models on image classification, transfer learning, Object Detection, Instance Segmentation, GANs and more Implement powerful use-cases like image captioning, reinforcement learning for hard attention, and recurrent attention models Book Description Convolutional Neural Network (CNN) is revolutionizing several application domains such as visual recognition systems, self-driving cars, medical discoveries, innovative eCommerce and more.You will learn to create innovative solutions around image and video analytics to solve complex machine learning and computer vision related problems and implement real-life CNN models. This book starts with an overview of deep neural networkswith the example of image classification and walks you through building your first CNN for human face detector. We will learn to use concepts like transfer learning with CNN, and Auto-Encoders to build very powerful models, even when not much of supervised training data of labeled images is available. Later we build upon the learning achieved to build advanced vision related algorithms for object detection, instance segmentation, generative adversarial networks, image captioning, attention mechanisms for vision, and recurrent models for vision. By the end of this book, you should be ready to implement advanced, effective and efficient CNN models at your professional project or personal initiatives by working on complex image and video datasets. What you will learn From CNN basic building blocks to advanced concepts understand practical areas they can be applied to Build an image classifier CNN model to understand how different components interact with each other, and then learn how to optimize it Learn different algorithms that can be applied to Object Detection, and Instance Segmentation Learn advanced concepts like attention mechanisms for CNN to improve prediction accuracy Understand transfer learning and implement award-winning CNN architectures like AlexNet, VGG, GoogLeNet, ResNet and more Understand the working of generative adversarial networks and how it can create new, unseen images Who this book is for This book is for data scientists, machine learning and deep learning practitioners, Cognitive and Artificial Intelligence enthusiasts who want to move one step further in building Convolutional Neural Networks. Get hands-on experience with extreme datasets and different CNN architectures to build efficient and smart ConvNet models. Basic knowledge of deep learning concepts and Python programming language is expected.