A First Course in the Numerical Analysis of Differential Equations

DOWNLOAD NOW »

Author: A. Iserles

Publisher: Cambridge University Press

ISBN: 0521734908

Category: Mathematics

Page: 459

View: 7290

lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.

A First Course in the Numerical Analysis of Differential Equations

DOWNLOAD NOW »

Author: Arieh Iserles

Publisher: Cambridge University Press

ISBN: 9780521556552

Category: Mathematics

Page: 378

View: 6297

Numerical analysis presents different faces to the world. For mathematicians it is a bona fide mathematical theory with an applicable flavour. For scientists and engineers it is a practical, applied subject, part of the standard repertoire of modelling techniques. For computer scientists it is a theory on the interplay of computer architecture and algorithms for real-number calculations. The tension between these standpoints is the driving force of this book, which presents a rigorous account of the fundamentals of numerical analysis of both ordinary and partial differential equations. The point of departure is mathematical but the exposition strives to maintain a balance between theoretical, algorithmic and applied aspects of the subject. In detail, topics covered include numerical solution of ordinary differential equations by multistep and Runge-Kutta methods; finite difference and finite elements techniques for the Poisson equation; a variety of algorithms to solve large, sparse algebraic systems; methods for parabolic and hyperbolic differential equations and techniques of their analysis. The book is accompanied by an appendix that presents brief back-up in a number of mathematical topics. Dr Iserles concentrates on fundamentals: deriving methods from first principles, analysing them with a variety of mathematical techniques and occasionally discussing questions of implementation and applications. By doing so, he is able to lead the reader to theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations.

Nonlinear Inverse Problems in Imaging

DOWNLOAD NOW »

Author: Jin Keun Seo,Eung Je Woo

Publisher: John Wiley & Sons

ISBN: 1118478150

Category: Technology & Engineering

Page: 376

View: 6151

This book provides researchers and engineers in the imaging field with the skills they need to effectively deal with nonlinear inverse problems associated with different imaging modalities, including impedance imaging, optical tomography, elastography, and electrical source imaging. Focusing on numerically implementable methods, the book bridges the gap between theory and applications, helping readers tackle problems in applied mathematics and engineering. Complete, self-contained coverage includes basic concepts, models, computational methods, numerical simulations, examples, and case studies. Provides a step-by-step progressive treatment of topics for ease of understanding. Discusses the underlying physical phenomena as well as implementation details of image reconstruction algorithms as prerequisites for finding solutions to non linear inverse problems with practical significance and value. Includes end of chapter problems, case studies and examples with solutions throughout the book. Companion website will provide further examples and solutions, experimental data sets, open problems, teaching material such as PowerPoint slides and software including MATLAB m files. Essential reading for Graduate students and researchers in imaging science working across the areas of applied mathematics, biomedical engineering, and electrical engineering and specifically those involved in nonlinear imaging techniques, impedance imaging, optical tomography, elastography, and electrical source imaging

Analysis and Numerics of Partial Differential Equations

DOWNLOAD NOW »

Author: Franco Brezzi,Piero Colli Franzone,Ugo Pietro Gianazza,Gianni Gilardi

Publisher: Springer Science & Business Media

ISBN: 8847025923

Category: Mathematics

Page: 366

View: 3605

This volume is a selection of contributions offered by friends, collaborators, past students in memory of Enrico Magenes. The first part gives a wide historical perspective of Magenes' work in his 50-year mathematical career; the second part contains original research papers, and shows how ideas, methods, and techniques introduced by Magenes and his collaborators still have an impact on the current research in Mathematics.

Fundamentals of Engineering Numerical Analysis

DOWNLOAD NOW »

Author: Parviz Moin

Publisher: Cambridge University Press

ISBN: 9780521805261

Category: Mathematics

Page: 209

View: 8806

Introduction to numerical techniques useful in solving complex engineering problems.

A First Course in Computational Fluid Dynamics

DOWNLOAD NOW »

Author: H. Aref,S. Balachandar

Publisher: Cambridge University Press

ISBN: 1107178517

Category: Science

Page: 417

View: 1444

Fluid mechanics is a branch of classical physics that has a rich tradition in applied mathematics and numerical methods. It is at work virtually everywhere, from nature to technology. This broad and fundamental coverage of computational fluid dynamics (CFD) begins with a presentation of basic numerical methods and flows into a rigorous introduction to the subject. A heavy emphasis is placed on the exploration of fluid mechanical physics through CFD, making this book an ideal text for any new course that simultaneously covers intermediate fluid mechanics and computation. Ample examples, problems and computer exercises are provided to allow students to test their understanding of a variety of numerical methods for solving flow physics problems, including the point-vortex method, numerical methods for hydrodynamic stability analysis, spectral methods and traditional CFD topics.

Numerische Behandlung partieller Differentialgleichungen

DOWNLOAD NOW »

Author: Christian Großmann,Hans-Görg Roos

Publisher: Springer-Verlag

ISBN: 9783519220893

Category: Mathematics

Page: 572

View: 7838

Mathematiker, Naturwissenschaftler und Ingenieure erhalten mit diesem Lehrbuch eine Einführung in die numerische Behandlung partieller Differentialgleichungen. Diskutiert werden die grundlegenden Verfahren - Finite Differenzen, Finite Volumen und Finite Elemente - für die wesentlichen Typen partieller Differentialgleichungen: elliptische, parabolische und hyperbolische Gleichungen. Einbezogen werden auch moderne Methoden zur Lösung der diskreten Probleme. Hinweise auf aktuelle Software sowie zahlreiche Beispiele und Übungsaufgaben runden diese Einführung ab.

Analysis II

DOWNLOAD NOW »

Author: Christiane Tretter

Publisher: Springer-Verlag

ISBN: 3034804768

Category: Mathematics

Page: 149

View: 959

Das Lehrbuch ist der zweite von zwei einführenden Bänden in die Analysis. Es zeichnet sich dadurch aus, dass alle Themen der Analysis 2 kompakt zusammengefasst sind und dennoch auf typische Schwierigkeiten eingegangen wird. Beginnend mit der Topologie metrischer Räume über die Differentialrechnung von Funktionen mehrerer reeller Variablen bis zu gewöhnlichen Differentialgleichungen und Fourierreihen, enthält das Buch alle prüfungsrelevanten Inhalte. Der Stoff kann anhand von Beispielen, Gegenbeispielen und Aufgaben nachvollzogen werden.

Solving ODEs with MATLAB

DOWNLOAD NOW »

Author: L. F. Shampine,I. Gladwell,S. Thompson

Publisher: Cambridge University Press

ISBN: 9780521530941

Category: Mathematics

Page: 263

View: 5265

This book, first published in 2003, provides a concise but sound treatment of ODEs, including IVPs, BVPs, and DDEs.

An Introduction to Parallel and Vector Scientific Computation

DOWNLOAD NOW »

Author: Ronald W. Shonkwiler,Lew Lefton

Publisher: Cambridge University Press

ISBN: 113945899X

Category: Computers

Page: N.A

View: 5276

In this text, students of applied mathematics, science and engineering are introduced to fundamental ways of thinking about the broad context of parallelism. The authors begin by giving the reader a deeper understanding of the issues through a general examination of timing, data dependencies, and communication. These ideas are implemented with respect to shared memory, parallel and vector processing, and distributed memory cluster computing. Threads, OpenMP, and MPI are covered, along with code examples in Fortran, C, and Java. The principles of parallel computation are applied throughout as the authors cover traditional topics in a first course in scientific computing. Building on the fundamentals of floating point representation and numerical error, a thorough treatment of numerical linear algebra and eigenvector/eigenvalue problems is provided. By studying how these algorithms parallelize, the reader is able to explore parallelism inherent in other computations, such as Monte Carlo methods.

Finite Elemente

Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie

DOWNLOAD NOW »

Author: Dietrich Braess

Publisher: Springer-Verlag

ISBN: 3662072335

Category: Technology & Engineering

Page: 320

View: 890

Diese völlig überarbeitete Neuauflage bietet dem Leser eine gründliche Einführung in die Methode der Finiten Elemente, welche heute verstärkt zur numerischen Lösung von partiellen Differentialgleichungen eingesetzt werden. Die Theorie wird so weit entwickelt, daß der Leser mit Kenntnissen aus den Grundvorlesungen des Mathematikstudiums auskommt. Dem für die Praxis relevanten Mehrgitterverfahren und der Methode der konjugierten Gradienten wird ein breiter Platz eingeräumt. Ausführlich wird die Strukturmechanik als ein wichtiger und typischer Anwendungsbereich für Finite Elemente behandelt. Da dieser Aspekt in anderen Lehrbüchern kaum Berücksichtigung findet, wurde er in der Neuauflage stark überarbeitet und abgerundet. Als weitere Ergänzung ist vor allem die Diskussion von a posteriori Schätzern zu nennen.

Mathematics Today

Bulletin of the Institute of Mathematics and Its Applications

DOWNLOAD NOW »

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 2606

Numerical Methods for Chemical Engineering

Applications in MATLAB

DOWNLOAD NOW »

Author: Kenneth J Beers,Kenneth J. Beers

Publisher: Cambridge University Press

ISBN: 9780521859714

Category: Juvenile Nonfiction

Page: 474

View: 9554

Applications of numerical mathematics and scientific computing to chemical engineering.

Essential Mathematical Methods for the Physical Sciences

DOWNLOAD NOW »

Author: K. F. Riley,M. P. Hobson

Publisher: Cambridge University Press

ISBN: 1139492942

Category: Science

Page: N.A

View: 8171

The mathematical methods that physical scientists need for solving substantial problems in their fields of study are set out clearly and simply in this tutorial-style textbook. Students will develop problem-solving skills through hundreds of worked examples, self-test questions and homework problems. Each chapter concludes with a summary of the main procedures and results and all assumed prior knowledge is summarized in one of the appendices. Over 300 worked examples show how to use the techniques and around 100 self-test questions in the footnotes act as checkpoints to build student confidence. Nearly 400 end-of-chapter problems combine ideas from the chapter to reinforce the concepts. Hints and outline answers to the odd-numbered problems are given at the end of each chapter, with fully-worked solutions to these problems given in the accompanying Student Solutions Manual. Fully-worked solutions to all problems, password-protected for instructors, are available at www.cambridge.org/essential.

Mathematical Methods for the Physical Sciences

An Informal Treatment for Students of Physics and Engineering

DOWNLOAD NOW »

Author: K. F. Riley

Publisher: Cambridge University Press

ISBN: 9780521098397

Category: Mathematics

Page: 533

View: 6560

Designed for first and second year undergraduates at universities and polytechnics, as well as technical college students.