A First Course in Bayesian Statistical Methods

DOWNLOAD NOW »

Author: Peter D. Hoff

Publisher: Springer Science & Business Media

ISBN: 9780387924076

Category: Mathematics

Page: 272

View: 4583

A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.

Wahrscheinlichkeitstheorie und Stochastische Prozesse

DOWNLOAD NOW »

Author: Michael Mürmann

Publisher: Springer-Verlag

ISBN: 364238160X

Category: Mathematics

Page: 428

View: 6380

Dieses Lehrbuch beschäftigt sich mit den zentralen Gebieten einer maßtheoretisch orientierten Wahrscheinlichkeitstheorie im Umfang einer zweisemestrigen Vorlesung. Nach den Grundlagen werden Grenzwertsätze und schwache Konvergenz behandelt. Es folgt die Darstellung und Betrachtung der stochastischen Abhängigkeit durch die bedingte Erwartung, die mit der Radon-Nikodym-Ableitung realisiert wird. Sie wird angewandt auf die Theorie der stochastischen Prozesse, die nach der allgemeinen Konstruktion aus der Untersuchung von Martingalen und Markov-Prozessen besteht. Neu in einem Lehrbuch über allgemeine Wahrscheinlichkeitstheorie ist eine Einführung in die stochastische Analysis von Semimartingalen auf der Grundlage einer geeigneten Stetigkeitsbedingung mit Anwendungen auf die Theorie der Finanzmärkte. Das Buch enthält zahlreiche Übungen, teilweise mit Lösungen. Neben der Theorie vertiefen Anmerkungen, besonders zu mathematischen Modellen für Phänomene der Realität, das Verständnis.​

Statistik-Workshop für Programmierer

DOWNLOAD NOW »

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 1474

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Angewandte Datenanalyse

Der Bayes'sche Weg

DOWNLOAD NOW »

Author: Daniel Bättig

Publisher: Springer-Verlag

ISBN: 366254220X

Category: Mathematics

Page: 393

View: 847

Dieses Buch bietet einen systematisch aufgebauten Einstieg in angewandte Datenanalyse, Bayes ́sche Statistik und moderne Simulationsmethoden mit dem Computer. Ausgehend von der Zielsetzung, nicht direkt messbare Größen zu bestimmen und Prognosen zu zukünftigen Werten von unsicheren Größen zu berechnen, beschreibt und erläutert es die Vorgehensweisen – von der systematischen Sammlung von Daten über die Quantifizierung von Unsicherheit anhand von Wahrscheinlichkeiten bis hin zur Anwendung von Regressionsmodellen.Mit zahlreichen Reflexionsaufgaben und Beispielen aus der Praxis sowie seiner in vielen Kursen erprobten Didaktik ist das Buch ideal für Studierende in den angewandten Wissenschaften wie Ingenieur-, Natur- und Wirtschaftswissenschaften geeignet.Für die Neuauflage wurden einige Kapitel überarbeitet. Zudem wurde ein Abschnitt zu hierarchischen Modellen eingefügt und das Buch mit einem Kapitel zur Plausibilität von Modellen und von Hypothesen ergänzt. Sowohl die verwendeten Datensätze und Programmcodes als auch die Lösungen zu den Reflexionsaufgaben sind als Zusatzmaterial online verfügbar.

Wahrscheinlichkeitsrechnung und Statistik

DOWNLOAD NOW »

Author: Robert Hafner

Publisher: Springer-Verlag

ISBN: 3709169445

Category: Mathematics

Page: 512

View: 3336

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.

Methods in Neuroethological Research

DOWNLOAD NOW »

Author: Hiroto Ogawa,Kotaro Oka

Publisher: Springer Science & Business Media

ISBN: 4431543317

Category: Medical

Page: 175

View: 5408

The rapid progress of neuroscience in the last decade can be largely attributed to significant advances in neuroethology, a branch of science that seeks to understand the neural basis of natural animal behavior. Novel approaches including molecular biological techniques, optical recording methods, functional anatomy, and informatics have brought drastic changes in how the neural systems underlying high-level behaviors such as learning and memory are described. This book introduces recent research techniques in neuroethology, with diverse topics involving nematodes, insects, and vertebrates (birds, mice and primates), divided into sections by research method. Each section consists of two chapters written by different authors who have developed their own unique approaches. Reports of research in “model animals” including C. elegans, Drosophila, and mice, which were not typical specimens in conventional neuroethology, have been deliberately selected for this book because a molecular genetic approach to these animals is necessary for advances in neuroethology. Novel methodology including optical recording and functional labeling with reporter genes such as GFP has been actively used in recent neurobiological studies, and genetic manipulation techniques such as optogenetics also are powerful tools for understanding the molecular basis of neural systems for animal behavior. This book provides not only these new strategies but also thought-provoking statements of philosophy in neuroethology for students and young researchers in the biological sciences.

Qualitätssicherung in der Umfrageforschung

Neue Herausforderungen für die Markt- und Sozialforschung

DOWNLOAD NOW »

Author: Frank Faulbaum,Matthias Stahl,Erich Wiegand

Publisher: Springer-Verlag

ISBN: 3658005157

Category: Social Science

Page: 215

View: 9610

​Der vorliegende Band vereinigt Beiträge zu den neuen Herausforderungen, die auf Grund der Entwicklung neuer Methoden, neuer Technologien und neuen sozialen Medien für die Qualität und die Qualitätssicherung in der Umfrageforschung erwachsen. Dabei geht es auch um die rechtlichen und berufsständischen Rahmenbedingungen. Der Band richtet sich an jene Vertreter der Markt- und Sozialforschung, die eigene empirische Erhebungen durchführen oder die Qualität empirischer Erhebungen bewerten müssen.​

Die Monte-Carlo-Methode

Beispiele unter Excel VBA

DOWNLOAD NOW »

Author: Harald Nahrstedt

Publisher: Springer-Verlag

ISBN: 3658101490

Category: Mathematics

Page: 45

View: 4289

Harald Nahrstedt zeigt hier den pragmatisch technischen und weniger den wissenschaftlichen Ansatz, wie Excel mit seinen Programmiermöglichkeiten sich immer mehr zu einem universellen Arbeitsmittel entwickelt. So ist die Simulation mit Hilfe von Pseudozufallszahlen ein schneller und preiswerter Weg zu fachlichen Aussagen. Den Rahmen dieser Abhandlung bildet der geschichtliche Hintergrund.

Hydro-Environmental Analysis

Freshwater Environments

DOWNLOAD NOW »

Author: James L. Martin

Publisher: CRC Press

ISBN: 1138000868

Category: Science

Page: 567

View: 6360

Focusing on fundamental principles, Hydro-Environmental Analysis: Freshwater Environments presents in-depth information about freshwater environments and how they are influenced by regulation. It provides a holistic approach, exploring the factors that impact water quality and quantity, and the regulations, policy and management methods that are necessary to maintain this vital resource. It offers a historical viewpoint as well as an overview and foundation of the physical, chemical, and biological characteristics affecting the management of freshwater environments. The book concentrates on broad and general concepts, providing an interdisciplinary foundation. The author covers the methods of measurement and classification; chemical, physical, and biological characteristics; indicators of ecological health; and management and restoration. He also considers common indicators of environmental health; characteristics and operations of regulatory control structures; applicable laws and regulations; and restoration methods. The text delves into rivers and streams in the first half and lakes and reservoirs in the second half. Each section centers on the characteristics of those systems and methods of classification, and then moves on to discuss the physical, chemical, and biological characteristics of each. In the section on lakes and reservoirs, it examines the characteristics and operations of regulatory structures, and presents the methods commonly used to assess the environmental health or integrity of these water bodies. It also introduces considerations for restoration, and presents two unique aquatic environments: wetlands and reservoir tailwaters. Written from an engineering perspective, the book is an ideal introduction to the aquatic and limnological sciences for students of environmental science, as well as students of environmental engineering. It also serves as a reference for engineers and scientists involved in the management, regulation, or restoration of freshwater environments.

Markov Chain Monte Carlo - Methoden: Herleitung, Beweis und Implementierung

DOWNLOAD NOW »

Author: Thomas Plehn

Publisher: Bachelor + Master Publication

ISBN: 3956844513

Category: Mathematics

Page: 56

View: 6375

In seiner Arbeit beschäftigt sich der Autor mit der ‘Markov Chain Monte Carlo‘, auch abgekürzt als MCMC. Dabei handelt es sich um eine Monte Carlo Methode. Allen Monte Carlo Methoden ist gemein, dass sie von einer mehr oder minder komplizierten Verteilung zufällige Szenarien erzeugen. Diese Szenarien werden dann genutzt um Aussagen über Erwartungswerte oder andere Kennzahlen der Verteilung zu treffen. Diese Aussagen sind natürlich nur zu gebrauchen, wenn man sehr viele zufällig erzeugte Szenarien auswertet. Die Methode kommt also immer dann zum Einsatz, wenn es nicht möglich ist, aus der Verteilung der Szenarien direkt Rückschlüsse auf die statistischen Kennzahlen der Verteilung zu ziehen, weder auf analytischem Wege, noch durch numerische Integration (bei sehr vielen Dimensionen steigt der Aufwand rapide an). Markov Chain Monte Carlo ist nun eine spezielle Monte Carlo Methode unter Zuhilfenahme von Markovketten. Diese kommt immer dann zum Einsatz, wenn es nicht möglich ist, von einer Verteilung auf einfache Weise Szenarien zu erzeugen. Eine Markovkette fängt bei einem Zustand an und geht von einem bestimmten Zustand mit einer bestimmten Wahrscheinlichkeit zu einem anderen Zustand über. Diese Übergangswahrscheinlichkeiten stehen in einer Übergangsmatrix. Der Knackpunkt ist nun, dass diese Form der Zustandsgenerierung oft einfacher zu implementieren ist, als direkt auf eine Verteilung zurückzugreifen. In der Arbeit gibt es mehrere konkrete Beispiele für den Einsatz solcher Methoden. Quelltexte der Implementierungen sind beigefügt.

R in a Nutshell

DOWNLOAD NOW »

Author: Joseph Adler

Publisher: O'Reilly Germany

ISBN: 3897216507

Category: Computers

Page: 768

View: 5274

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse

DOWNLOAD NOW »

Author: Kai L. Chung

Publisher: Springer-Verlag

ISBN: 3642670334

Category: Mathematics

Page: 346

View: 4472

Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

Programmieren mit R

DOWNLOAD NOW »

Author: Uwe Ligges

Publisher: Springer-Verlag

ISBN: 3540267328

Category: Mathematics

Page: 237

View: 4406

R ist eine objekt-orientierte und interpretierte Sprache und Programmierumgebung für Datenanalyse und Grafik - frei erhältlich unter der GPL. Ziel dieses Buches ist es, nicht nur ausführlich in die Grundlagen der Sprache R einzuführen, sondern auch ein Verständnis der Struktur der Sprache zu vermitteln. Leicht können so eigene Methoden umgesetzt, Objektklassen definiert und ganze Pakete aus Funktionen und zugehöriger Dokumentation zusammengestellt werden. Die enormen Grafikfähigkeiten von R werden detailliert beschrieben. Das Buch richtet sich an alle, die R als flexibles Werkzeug zur Datenenalyse und -visualisierung einsetzen möchten: Studierende, die Daten in Projekten oder für ihre Diplomarbeit analysieren möchten, Forschende, die neue Methoden ausprobieren möchten, und diejenigen, die in der Wirtschaft täglich Daten aufbereiten, analysieren und anderen in komprimierter Form präsentieren.

Monte Carlo Statistical Methods

DOWNLOAD NOW »

Author: Christian Robert,George Casella

Publisher: Springer Science & Business Media

ISBN: 1475730713

Category: Mathematics

Page: 509

View: 7951

We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.

Bayesianische Erkenntnistheorie

DOWNLOAD NOW »

Author: Luc Bovens,Stephan Hartmann

Publisher: N.A

ISBN: 9783897850675

Category: Bayesian statistical decision theory

Page: 170

View: 9062

Angewandte Zeitreihenanalyse mit R

DOWNLOAD NOW »

Author: Rainer Schlittgen

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 311041399X

Category: Business & Economics

Page: 329

View: 4544

Dieses Buch präsentiert die wichtigsten Modelle und Verfahren der Zeitreihenanalyse in einer für Studierende und Anwender leicht zugänglichen Form. Der Schwerpunkt liegt auf dem Zeitbereich; speziell werden explorative Methoden, ARMA-Modelle mit ihren Erweiterungen, Prognosemethoden und Zeitreihenregressionen behandelt. Auch der Frequenzbereich wird vorgestellt. Weiter werden multivariate Zeitreihen, Zustandsraummodelle und Modelle für Heteroskedastizität behandelt. Die Methoden werden überwiegend anhand einfacher Situationen verdeutlicht und mittels zahlreicher realer Beispiele illustriert. Die Beispiele stammen aus den Bereichen Wirtschaftswissenschaften, Biologie, Geologie, Medizin und Meteorologie. Die umfassende Erfahrung des Autors auf dem Gebiet der Zeitreihenanalyse fließt an vielen Stellen in Form von Anwendungstipps ein. Dieser Text zur Zeitreihenanalyse ist der erste im deutschsprachigen Bereich, der auf der freien statistischen Programmierumgebung R basiert. In einem eigenen Kapitel wird eine kurze Einführung gegeben. Bei den Beispielen wird der zugehörige Code jeweils angegeben und kommentiert. Zudem enthält jedes Kapitel eine Übersicht über die entsprechenden R-Funktionen der verschiedenen R-Pakete. Die Neuauflage wurde akualisiert und unter anderem um ein Kapitel zu der Long-Memory-Prozessen erweitert.

An Introduction to Bayesian Analysis

Theory and Methods

DOWNLOAD NOW »

Author: Jayanta K. Ghosh,Mohan Delampady,Tapas Samanta

Publisher: Springer Science & Business Media

ISBN: 0387354336

Category: Mathematics

Page: 354

View: 7878

This is a graduate-level textbook on Bayesian analysis blending modern Bayesian theory, methods, and applications. Starting from basic statistics, undergraduate calculus and linear algebra, ideas of both subjective and objective Bayesian analysis are developed to a level where real-life data can be analyzed using the current techniques of statistical computing. Advances in both low-dimensional and high-dimensional problems are covered, as well as important topics such as empirical Bayes and hierarchical Bayes methods and Markov chain Monte Carlo (MCMC) techniques. Many topics are at the cutting edge of statistical research. Solutions to common inference problems appear throughout the text along with discussion of what prior to choose. There is a discussion of elicitation of a subjective prior as well as the motivation, applicability, and limitations of objective priors. By way of important applications the book presents microarrays, nonparametric regression via wavelets as well as DMA mixtures of normals, and spatial analysis with illustrations using simulated and real data. Theoretical topics at the cutting edge include high-dimensional model selection and Intrinsic Bayes Factors, which the authors have successfully applied to geological mapping. The style is informal but clear. Asymptotics is used to supplement simulation or understand some aspects of the posterior.

Statistik in der Psychologie

Vom Einführungskurs bis zur Dissertation

DOWNLOAD NOW »

Author: Klaus D. Kubinger,Dieter Rasch,Takuya Yanagida

Publisher: Hogrefe Verlag

ISBN: 3840923565

Category: Psychology

Page: 596

View: 2441

Dieses Lehrbuch vermittelt die für das Psychologiestudium wichtigen Methoden der wissenschaftlichen Disziplin „Statistik“. Nach einer Einführung in die gängigen Messmethoden werden die Grundlagen der Beschreibenden Statistik erläutert. Weitere Kapitel behandeln die Voraussetzungen und Methoden der Schließenden Statistik, wie Wahrscheinlichkeitstheorie und Zufallsziehungen, und erörtern Methoden zur Schätzung von grundlegenden Parametern wie Erwartungswert und Varianz. Ausführlich werden die Verfahren der Varianz-, Regressions- und Korrelationsanalyse sowie die einfache und multiple Regression dargestellt. Abschließend gehen die Autoren auf Grundlagen der Modellbildung und theoriebildende Verfahren wie die Cluster- und die Faktorenanalyse ein. Zur Illustration der Inhalte werden viele Beispiele aus der psychologischen Forschung verwendet, wobei immer auch das Vorgehen mit den Statistikprogrammen R und SPSS erläutert wird. Ein breiter Raum wird der Untersuchungsplanung gewidmet, die für empirische Forschungsarbeiten im Master- und Promotionsstudium unverzichtbar ist. Das Buch vermittelt somit nicht nur das notwendige Verständnis für die Inhalte der Statistik, sondern stellt für fortgeschrittene Studierende auch ein geeignetes Nachschlagewerk dar.